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on combination of the autumn ESC and SST exhibits the 
best hindcast skill among the three models, its correlation 
coefficient between the observation and the hindcast reach-
ing 0.86. This indicates that this physical-based PLS model 
may provide another practical tool for the EAWM. In addi-
tion, the relative contribution of the ESC and SST is also 
examined by assessing the hindcast skills of the other two 
PLS models constructed solely by the ESC or SST. Possi-
ble physical mechanisms are also discussed.

Keywords  Statistical model · East Asian winter 
monsoon · Seasonal prediction

1  Introduction

The East Asian (EA) winter monsoon (EAWM), a rela-
tive shallow system compared with its summer counter-
part (Yang et  al. 2002), regulates the major variation of 
wintertime EA climate (e.g., Tao 1957; Zhang et al. 1996; 
Wang et  al. 2000; and many others). During the past few 
decades, extreme climate and weather events such as snow-
storms and cold spells were far more prevalent than before, 
especially during the 2007–2015 winter (Wen et al. 2009; 
Seager et al. 2010; Wu et al. 2011; Li and Wu 2012), caus-
ing considerable economic losses as well as social impacts 
on people’s daily life. Thus, how to predict the EAWM var-
iations is of practical importance.

The EAWM system encompasses tropics, subtropics and 
mid-latitudes and exhibits complex temporal and spatial 
structures. Many atmospheric circulation factors have been 
recognized to contribute to the EAWM variations, such as 
Siberian-Mongolian High (SMH) (Takaya and Nakamura 
2005a, b; Ma et  al. 2012), Southern Hemisphere annular 
mode (SAM) (Wu et al. 2009), Arctic Oscillation (AO) and 
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North Atlantic Oscillation (NAO) (Gong et al. 2001; Kim 
and Ahn 2012). Wang et al. (2010) identified two dominant 
modes of EA winter surface air temperature (SAT) (Fig. 1). 
A strong northern mode is characterized by an enhanced 
SMH (Fig. 2b) and a westward shift of the EA major trough 
(Fig.  2a), favoring a cold winter north of 40°N (Fig.  2c). 
A strong southern mode features a deepening EA trough 
(Fig. 2d–f) with cold air originated from western Mongolia, 
favoring a cold winter south of 40°N. Wu et al. (2011) also 
uncovered the third principal mode of EAWM, explaining 
only 8.7% of the total SAT variance but bringing about the 
catastrophic consequences such as the once-in-a-century 
snow storms in 2007/08 winter.

The predictability sources of the EAWM variations 
involve in air-sea-land interactions as well as the topo-
graphic forcing exerted by the Tibetan Plateau (TP) (Hsu 

Fig. 1   Time series of the normalized East Asian winter monsoon 
index (EAWMI, Wang et al. 2010) for the northern (black curve) and 
southern modes (red curve), respectively (1967–2014). Winter refers 
to December–January–February (DJF) in this study

Fig. 2   The left column denotes 
the correlation pattern (color 
shadings) between the northern 
EAWMI and DJF a Z500, b 
SLP, c 2-m air temperature 
(T2m). Contours represent the 
DJF climatological mean a 
Z500 (10 gpm), b SLP (hPa), 
and c T2m (°C). The zonal and 
meridional components of the 
vectors represent, respectively, 
the correlation coefficients of 
the zonal and meridional winds 
with the northern EAWMI. 
The color shadings and vectors 
indicate the significant fields 
above the 95% confidence level. 
The black shading in Fig. 2b 
indicates the Tibetan Plateau 
region. The right column is the 
same as the left one except for 
the southern EAWMI
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1987; Chang et al. 2006; Wang and Chen 2014). In terms 
of sea surface temperature (SST), El Niño-Southern 
Oscillation (ENSO), the major large-scale air-sea vari-
ability in the tropical Pacific, is viewed as an essential 
tropical forcing to the EAWM interannual variations 
(Zhang et  al. 1996; Wang et  al. 2000, 2010). Gener-
ally speaking, the EAWM tends to be weak in El Niño 
years, and vice versa (Li 1990). The key system link-
ing the EAWM and ENSO is the anomalous Philippine 
Sea anticyclone (PSAC) (Zhang et al. 1996; Wang et al. 
2000). Different from the tropical SST forcing, the extra-
tropical SST is usually connected with the EAWM varia-
tion through its regulation on higher-latitude circulation 
systems such as SMH (Bates 2007), Aleutian Low (AL) 
(Bond et al. 2003), or the North Pacific Oscillation (NPO) 
(Wang et  al. 2008; He and Wang 2013). Besides SST, 
snow cover in the northern hemisphere (NH) has been 
suggested to present the vital modulation on EA winter 
climate through the strong positive feedbacks related to 
albedo (Déry and Brown 2007; Cohen and Jones 2011) 
as well as the mean flow interaction processes across 
troposphere and stratosphere (Gong et al. 2003; Yu et al. 
2016). These low-boundary forcings are considered as 
fundamental predictability sources for the EAWM vari-
ations (Charney and Shukla 1981; Trenberth and Hurrell 
1994; Shukla 1998).

Owing to the complexity of the influencing factors and 
the intricate dynamical structures of the EAWM, seasonal 
prediction of the EAWM is deemed as a scientific challenge 
(Wang et  al. 2009). Most dynamical seasonal predictions 
for the EAWM are unsuccessful (Shukla et al. 2000; Wang 
et al. 2009). Under this circumstance, statistical models are 
considered as an alternative way for the EAWM seasonal 
prediction owing to the linear connection between influen-
tial factors and the EAWM. Wu et al. (2011) established a 
physical-empirical (PE) model for the third leading mode 
of the EAWM which attains a promising skill in 2007/2008 
winter. Lee et  al. (2013) found that the dominant EAWM 
modes intimately related to ENSO is far more predictable 
by the statistical models than others. However, during the 
aforementioned linear statistical model establishment, the 
collinearity among the influential factors would make the 
regression coefficients unreliable or lead to the inaccurate 
prediction. Besides, most prior statistical strategies are 
based on SST. Lin and Wu (2012) suggested that it is possi-
ble that the snow cover effects are not properly presented in 
the dynamical models, which leads to the poor performance 
of dynamical prediction systems in winter, particularly the 
extreme winter conditions like 2009/10 winter. In light of 
these, we focus on the partial-least square (PLS) regression 
which can well eliminate the multicollinearity in an ordi-
nary least square strategy. We also intend to identify the 
physical-based SST and Eurasian snow cover (ESC) modes 

to predict the strength of the EAWM and assess their rela-
tive contribution to the EAWM seasonal prediction.

In this paper, we attempt to answer two questions: (1) 
How are the EAWM variation connected with the previ-
ous ESC/SST anomaly? (2) What kind of contribution can 
the ESC/SST make to the EAWM variability? The whole 
paper is structured as following: Sect.  2 introduces the 
datasets and methodology used in this work. In Sect. 3, we 
analyze the prior autumn SST and snow cover anomalies 
during the abnormal EAWM years. The dominant ESC 
and SST modes preceding the EAWM are revealed by the 
PLS method in Sect. 4. Section 5 displays the PLS model 
results and highlights the contribution of ESC and SST in 
the EAWM prediction. Finally, conclusion and discussions 
are made in Sect. 6.

2 � Data and method

The datasets utilized in the present study consists of: (1) 
the global land precipitation (PREC/L) data (Chen et  al. 
2002); (2) the monthly mean atmospheric fields, derived 
from the Japanese global atmospheric 55-year reanalysis 
data (JRA-55; Ebita et  al. 2011); (3) monthly mean SST 
from Extended Reconstructed SST Version 3b (ERSST 
V3b; Smith et  al. 2008); (4) Northern Hemisphere snow 
cover data at 7921 stations (derived online from http://
climate.Rutgers.edu/snowcover/index, the Rutgers Uni-
versity Snow Lab). (5) Niño3.4 (5°N–5°S, 170°–120°W) 
index and unsmoothed Atlantic Multidecadal Oscillation 
(AMO) index (derived online from http://www.esrl.noaa.
gov/psd/data/climateindices/list/). In this study, all data 
are validated for the period of 1967–2014. Winter refers 
to December–January–February (DJF), while autumn Sep-
tember–October–November (SON).

The EAWM index (EAWMI) used in this paper is 
according to the definition by Wang et  al. (2010). This 
EAWMI is defined as 500 hPa geo-potential height aver-
aged over region (30°–50°N, 110°–130°E). Wang et  al. 
(2010) noted that the northern and southern modes of 
SAT can account for most of the total variance over the 
entire EAWM region but most EAWM circulation indi-
ces basically describe the southern mode (e.g., Guo 1983; 
Wu and Wang 2002; Yan et al. 2004). The EAWMI used 
in this work can well depict not only the southern SAT 
mode, but also the northern mode (Fig. 3). Its correlation 
coefficient with the southern SAT mode index (Fig.  1) 
reaches 0.70, while that with the northern mode index 
0.64. This EAWMI also exhibits significant connection 
with other EAWM indices, i.e., defined by Guo (1983) 
(0.6), Wu and Wang (2002) (0.65) and Yan et al. (2004) 
(0.78). Besides, major circulation components of the 
EAWM are also well depicted by this EAWMI (Fig.  4). 

http://climate.Rutgers.edu/snowcover/index
http://climate.Rutgers.edu/snowcover/index
http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.esrl.noaa.gov/psd/data/climateindices/list/
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During a high EAWMI winter, the 300 hPa positive west-
erly anomalies over the EA jet stream core region concur-
rent with negative westerly anomalies over its pole-ward 
side would favor the cyclonic vorticity genesis (Fig. 4a) 
(Jhun and Lee 2004). This pattern may cause a deepen-
ing EA trough (Fig.  4b). The strong northwesterly sur-
face wind anomaly intrudes along the eastern flank of 
enhanced SMH directly to the EA region (Fig. 4c), lead-
ing to extreme cold winter conditions (Fig.  4d) (Tao 

1957). Meanwhile, poor precipitation mainly prevails 
over northern and East China.

The PLS method is firstly developed by Herman Wold in 
the 1960s (Wold 1966) for constructing predictive models 
when the variables are more than observation and highly 
collinear (Yeniay and Goktas 2002; Haenlein and Kaplan 
2004). PLS has been widely used in computational biol-
ogy (Tan et al. 2004), chemometrics (Haaland and Thomas 
1988; Wold et  al. 2001; Udelhoven et  al. 2003) and neu-
roimaging (McIntosh and Lobaugh 2004). This technique 
was also applied in climate research for the purpose of sta-
tistical prediction (Smoliak et al. 2010; Zhang et al. 2011; 
Wu and Yu 2016; Song et al. 2016).

In this paper, we try to establish a EAWM prediction 
model based on the preceding autumn SST or ESC. The 
predictors Xij is the autumn normalized SST or ESC varia-
tions preceding the EAWM (an i × j array, row i represents 
space times, also referred to as observations and column j 
a certain area of grid points or the number of predictors), 
while the predictand Yi time series of the EAWMI. Note 
that the combined mode in Sect. 4 is actually a collection 
of SST and ESC data and the ESC data is interpolated to 
the Eurasian continent. Both the predictors and the pre-
dictand are standardized prior to performing the procedure. 
The analysis commences by calculating the correlation 

Fig. 3   Time series of the normalized combined EAWMI [Z500 aver-
aged within the area (30°–50°N, 110°–130°E)] defined by Wang et al. 
(2010)

Fig. 4   The correlation pattern 
(color shadings) between the 
EAWMI in Fig. 3 and DJF a 
U300, b Z500, c SLP, d T2m, 
and e precipitation. Contours 
denote the DJF climatological 
mean a U300 (m s−1), b Z500 
(10 gpm), c SLP (hPa), and 
d T2m (°C). The zonal and 
meridional components of the 
vectors represent, respectively, 
the correlation coefficients of 
the zonal and meridional winds 
with the EAWMI. The color 
shadings and vectors indicate 
the significant fields above 
the 95% confidence level. The 
red box in d and e denotes the 
East Asia region (0–60°N, 
90–140°E)
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coefficients between Yi and each observation of Xij to get 
a correlation coefficients matrix bj. Then each observation 
of Xij is projected onto the bj to obtain Z1, the first predictor 
throughout the whole model establishment. Then build the 
regression equation between Z1 and Xij∕Yi respectively to 
reveal the residual fields for predictors Xij and predictend 
Yi. Next, the same procedure is performed on the residual 
fields of predictors Xij and predictend Yi till the major-
ity of the covariance between Xij and Yi can be explained 
by Z1,… , Zk components, k representing the number of 
Z components during the regression. Note that Z1,… , Zk 
components are orthogonal to each other and arranged in 
order of decreasing variance of predictand Yi. It should be 
mentioned that the optimal components for PLS models 
are determined by cross-validation using the training data. 
More detailed explanation and the mathematical framework 
of PLS is given by Song et al. (2016).

In the present example, the PLS method aims to find 
the leading modes of SST variations that best explain the 
covariance between SST and the EAWMI variations. This 
method is totally different from the principal compo-
nent regression (PCR) or empirical orthogonal function 
(EOF) analysis. In other words, the SST mode uncovered 
by the PLS method can explain both variance of SST and 
the EAWMI, whereas that revealed from the EOF or PCR 
could only explain the variance of SST. Since both PCR 
and PLS are better to handle the collinearity among the 
regressors, regression model constructed by PLS has the 
higher predictive ability using the smaller number of fac-
tors than PCR (Yeniay and Goktas 2002).

3 � Autumn SST/ESC anomalies preceding 
the abnormal EAWM

The general snow-monsoon and SST-monsoon relation-
ships have been demonstrated in many works (Wang et al. 
2000; Gong et  al. 2003; Cohen and Jones 2011; He and 
Wang 2013). In this study, the anomalous EAWM years 
are defined when the normalized EAWMI is more than 0.8 
or less than −0.8. This threshold value provides sufficient 
cases to contrast their snow cover features preceding the 
strong and weak monsoon winter. The strong EAWM years 
include: 1972, 1978, 1986, 1988, 1989, 1991, 1992, 1997, 
2001, 2002, and 2006, whereas the weak years: 1967, 1976, 
1980, 1983, 1984, 1985, 2000, 2009, 2010, 2011 and 2012.

To identify the snow cover and SST anomalies preced-
ing the abnormal EAWM, Fig. 5 shows the autumn SST 
and snow cover composite differences between the strong 
and weak EAWM years (strong minus weak). Large areas 
of significant snow cover anomalies are mainly located 
in the central Eurasian continent with positive anomalies 
over the TP region and expand northeastward towards 

northeastern Siberia (Fig. 5a). These crucial snow cover 
areas are basically consistent with those identified by pre-
vious results. For instance, Wang et al. (2010) found that 
snow cover in central Siberia and Russian far-east regions 
provides precursory conditions for the anomalous EAWM 
northern and southern mode, respectively. In addition, 
snow cover anomalies in due north of the Eurasian con-
tinent also signify precursors for the abnormal EAWM 
(Fig. 5a).

Figure  5b displays the autumn SST anomalies prior 
to the anomalous EAWM. The major SST difference 
between the strong and weak EAWM years is a pro-
nounced ENSO-like pattern in North Pacific. This indi-
cates that ENSO is the most significant predictability 
source in SST for the abnormal EAWM. Besides, North 
Atlantic and tropical Indian Ocean also show some sig-
nificant SST signals in preceding autumn. The former 
basically exhibits an anomalous tri-pole SST pattern, 
while the latter is adjacent to the Maritime Continent.

To summarize, the SST and ESC anomalies preced-
ing the abnormal EAWM imply that these autumn low-
boundary forcings may play an essential role in the sea-
sonal prediction of the EAWM variations. However, the 
specific details need further investigations, particularly 
the relative importance of SST and ESC in contribution 
to the EAWM seasonal prediction skill.

Fig. 5   Composite difference of September–October–November 
(SON) a snow cover and b SST between the strong and weak EAWM 
years (strong minus weak). A strong EAWM year refers to its cor-
responding EAWMI value greater than 0.8 times standard deviation, 
whereas a weak EAWM year less than −0.8 times standard deviation. 
The shaded areas exceed the 95% confidence level based on the Stu-
dent’s t test
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4 � Dominant SST and ESC modes preceding 
the EAWM

Before establishing a statistical prediction model with the 
PLS regression (e.g., Zhang et al. 2011; Wu and Yu 2016), 
we need to identify the dominant SST and ESC modes 
preceded with the abnormal EAWM by using of the PLS 
regression with the EAWMI and SON SST (or ESC).

Figure  6 presents the first PLS (PLS1) mode, includ-
ing prior autumn SST pattern and the corresponding time 
series for the 35-year period (1967–2001). The percent-
age numbers in Fig.  6a denote the significance of the 
PLS1 mode explaining the total SST (11%) and EAWMI 
(47.7%) variances, respectively. The PLS1 mode exhib-
its a tripole SST anomaly in the North Pacific (Fig. 6a). 
The correlation coefficient between the PLS1 time series 
and the SON Niño3.4 SST index attains 0.42, exceeding 
the 95% confidence level based on the Student’s t test. 
In addition, the SST PLS1 mode also exhibits basin-
wide negative anomalies in the North Atlantic, resem-
bling an Atlantic Multi-decadal Oscillation (AMO) pat-
tern (Enfield et  al. 2001). The correlation coefficient 

between the PLS1 time series and the unsmoothed AMO 
index (the area-averaged SST anomaly over North Atlan-
tic region) is 0.50. Note that we did a series of sensitive 
experiments by altering the SST domains and the number 
of leading PLS modes to reduce the dispensable informa-
tion (noisy signals) to the minimum. Finally, it is found 
that the optimal SST region is within (120°E–360°, 
5°N–80°N) and the PLS1 mode for SST is sufficient 
for the EAWM prediction skill based on results of 
cross-validation.

To further interpret the physical linkage between the 
SST PLS1 mode and the EAWM, Fig.  7 shows the sea-
sonal evolution of SST patterns associated with the PLS1 
mode from D(0)JF(1) to SON(1). The year in which the 
SST PLS1 mode occurs is denoted as year “0” (Fig.  6), 
whereas the next year as year “1”. The significantly 
negative SST anomalies in the equatorial central-eastern 
Pacific sustain from D(0)JF(1) to MAM(1) (Fig.  7a, b) 
and weaken since JJA(1). This basically corresponds to 
an ENSO decaying phase. Meanwhile, the anomalously 
negative SST anomalies in the whole North Atlantic 
basin persist throughout the next year (Fig. 7).

Fig. 6   a The first leading mode 
and b time series of SON sea 
surface temperature (SST) 
derived from the partial-least 
square (PLS) regression analy-
sis (1967–2001). The percent-
age numbers represent the 
SST (left) and EAWMI (right) 
variance explained by the same 
SST mode, respectively

Fig. 7   a D(0)JF(1), b MAM(1), 
c JJA(1), d SON(1) SST anoma-
lies (contours in units of K) 
regressed against the PLS1time 
series in Fig. 6b. The light and 
dark shadings denote 90 and 
95% confidence levels. “0” 
denotes the simultaneous year, 
while “1” the next year. MAM 
refers to March–April–May and 
JJA June–July–August
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The above results can also be discerned from the lead-
lag correlations between PLS1 time series and the Niño3.4 
index (red curve)/AMO index (blue curve) (Fig.  8). The 
PLS1 mode exhibits a stable and significant linkage with 
ENSO (or the Niño3.4 index) from SON(0) to JJA(1) 
(red curve). Such SST evolution tendency implies that the 
PLS1 SST pattern in SON(0) inclines to precede the ENSO 
mature phase and decay with the ENSO events. Wang et al. 
(2000) suggested that the key system connecting the ENSO 
and the EAWM is the PSAC. The northeasterly winter 
monsoon over southern EA tends to be weakened by the 
anomalous southwesterly winds to the west of the PSAC 
center. As for AMO, its correlation with the SST PLS1 
mode is significant throughout the next year with Atlantic 
basin-wide SST anomalies on the EAWM interdecadal var-
iations (Bates 2007).

Same as above, we did a series of sensitive experi-
ments by using of the PLS regression with the EAWMI 
and SON ESC and found that the optimal ESC region is 
within (40°E–180°, 20°N–80°N) and the three leading 
PLS modes for ESC are sufficient for the EAWM predic-
tion skill based on the cross-validation. Figure 9 presents 
the preceding autumn ESC patterns and the correspond-
ing time series for 35-year period (1967–2001). The three 
leading ESC modes could explain 84.6%/33.5% of the 
EAWMI/ESC variances. The ESC PLS1 mode, explain-
ing more than half of the EAWMI variance, is charac-
terized by a continental-scale mono-sign ESC anomaly 
pattern (Fig. 9a). The extreme center is located in the cen-
tral-eastern Siberia, expanding southwestward towards 

TP and the adjacent area. Preceding a strong EAWM, the 
excessive autumn ESC can reduce the amount of solar 
radiation absorbed by the ground due to the increasing 
albedo, and favor an intensified SMH over the mid-high 
latitudes (Fig.  10d) (Barnett et  al. 1989). These results 
further verify those in Fig. 4c.

The ESC PLS2 and PLS3 modes, explaining 25.2% of 
the EAWMI variance, basically exhibit a north–south see-
saw ESC anomaly pattern. Such opposite ESC anomaly 
distribution implies dissimilar snow cover impacts on the 
northern and southern Eurasia. Wang et  al. (2010) pro-
posed two distinct EAWM modes corresponding to two dif-
ferent snow cover forcings. A strong northern mode is usu-
ally preceded by excessive snow cover over central Siberia 
and a strong southern mode by reduced snow cover over 
the northeastern Siberia. The most evident ESC anomalies 
associated with the PLS2 mode are located in the region 
north of 40°N, resembling a northern mode. The ensuring 
winter circulation exhibits an obvious Z500 and sea level 
pressure (SLP) anomaly belt over the northwestern Pacific 
(Fig.  10b, e), favoring a zonal displacement of the EA 
grand trough. The PLS3 mode is characterized by signifi-
cant snow cover anomalies in the northern Siberia, corre-
sponding to a southern EAWM mode. The Z500 and SLP 
anomalies exhibit more meridional-oriented (Fig.  10c, f), 
favoring a meridional displacement of the EA grand trough 
and steering the cold air mass invasion to the southern EA.

Fig. 8   The lead-lag correlation coefficients between SST PLS1 time 
series in Fig. 6b and the Niño3.4 index (red curve)/AMO index (blue 
curve) from SON(−1) to SON (1) respectively. The horizontal line 
represents the correlation coefficients significant at the 95% confi-
dence level. The vertical line indicates SON(0), where the simultane-
ous correlations are shown

Fig. 9   The same as Fig.  6, but for the SON Eurasian snow cover 
(ESC)



	 L. Yu et al.

1 3

The aforementioned result demonstrates that the anom-
alous ESC or SST may provide precursory conditions for 
the abnormal EAWM. To further analyze the co-mingled 
effects of the SST and ESC, Fig. 11 shows the four lead-
ing combined PLS modes and corresponding time series. 
Note that same as above, the sensitive experiments indicate 
that the four combined PLS modes are sufficient for the 
EAWM prediction skill based on the cross-validation. The 
combined modes account for 97.8% of the total EAWM 
variance. The first combined mode explains nearly 70% of 
the EAWM variance. Its combined pattern and evolution 
features (Figs. 11a, 12) basically resemble those associated 
with the sole SST or first ESC mode. The correlation coef-
ficient for the first combined (Fig. 11b) and the SST PLS1 
mode (Fig. 6b) reaches 0.92, whereas that for the first com-
bined and the ESC mode (Fig.  9b) 0.81. The other three 
combined modes (Fig.  11c, e, g) accounting about 28% 
of the total EAWM variance also show clearly connection 
with corresponding sole ESC and SST modes and the cor-
relation coefficients between combined PLS and SST(ESC) 
PLS all exceed the 95% confidence level based on the stu-
dent’s t test (Table 1).

To summarize, the preceding ESC and SST anoma-
lies could provide potential predictability sources for the 

EAWM variations. To quantify the ESC or/and SST contri-
bution to the EAWM seasonal prediction skill, we will con-
struct the statistical prediction models based on the ESC, 
SST and combined PLS leading modes, respectively.

5 � PLS prediction models

The PLS models are established using 1967–2001 as a 
training period, and then a 11-year (2002–2012) hindcast is 
conducted to examine the skill of these PLS models.

The optimal components for fitting PLS models are 
determined by cross-validation using the training data, seen 
in Sect. 4. We choose the first leading SST mode (Fig. 6), 
three leading ESC modes (Fig. 9) and four leading modes 
of the combination of ESC and SST (Fig.  11) to build 
the PLS models, respectively. The prediction equation is 
addressed as follows:

Two formulas are included in Eq.  (1): Yfit = X × Beta, 
Ypredict = Yfit + Yresidual. Beta is the PLS regression coef-
ficients, a p + 1-by-1 matrix (p represents the number of 
predictors), containing intercept terms in the first row. X 

(1)Ypredict = X × Beta + Yresidual.

Fig. 10   The left column represents lag correlation between ESC 
PLS1 time series in Fig.  9b and DJF (a) Z500 (color shadings), d 
SLP (color shadings). Color shadings indicate the significant fields 

above the 90%/95% confidence level. The middle and right column 
are the same as the left column, but for time series of the second and 
third mode, respectively
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Fig. 11   The same as Fig. 6, but 
for the SON snow cover and 
SST, called combined mode

Fig. 12   Same as Fig. 7 but for 
time series of the SON com-
bined PLS1 mode in Fig. 11
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is the predictors, an n-by-p matrix (n represents the obser-
vations). Yfit is the n-by-1 matrix, treated as the fitted 
value of the PLS model. Yresidual represents the difference 
between the fitted value and the corresponding observation, 
Yresidual = Yobserve − Yfit.

Take the EAWMI in 2002 as an example. The pre-
diction of the EAWMI in 2002 uses the autumn SST 
(referred to as X, an n + 1-by-p matrix) from 1967 to 
2002 as well as the EAWMI (referred to as Y, an n-by-1 
matrix) for the period of 1967–2001, and so on. Beta 
comes from the 35-year (1967–2001) training process, 
during which the PLS method is performed with the 
observed autumn SST and EAWMI for the period of 
(1967–2001), Yfit(1967−2001) = X1967−2001 × Beta. After that, 
the SON SST data for the year 2002 is input into the 
equation, Yfit2002 = X2002 × Beta. The Yresidual for the year 
2001 (Yresidual2001 = Yobserve2001 − Yfit2001) obtained from the 

training period is added to “Yfit2002” to get the predicted 
EAWMI in 2002 (Ypredict2002 = Yfit2002 + Yresidual2001). The 
PLS prediction procedures using the ESC or combination 
of SST and ESC(SST + ESC) are the same as above. The 
“X” in Eq. (1) is replaced by ESC or SST + ESC.

Figure  13 presents the prediction skill of these PLS 
models. During the 35-year training period (1967–2001), 
all three models can well reconstruct the EAWMI time 
series (see Cor0 values at the left side of the vertical pur-
ple line). In general, the 11-year hindcasts (2002–2012) 
of these PLS models exhibit promising skills (see Cor1 
values at the right side of the vertical purple line) 
which are superior to the ensemble mean of versions 3 
and 4 of the Canadian Community Atmosphere Model 
(CanCM3/4) hindcasts from the newly developed North 
American Multi-model Ensemble (NMME) Predic-
tion System. Table  2 shows the the correlation and root 
mean square error (RMSE) between model results and 

Table 1   Correlation between combined PLS and the corresponding 
sole SST/ESC PLS

Combined model SST/ESC model CORR

Combine_1 SST_1 0.92
ESC_1 0.85

Combine_2 SST_2 0.96
ESC_2 0.42

Combine_3 SST_3 0.73
ESC_3 0.57

Combine_4 SST_4 0.9
ESC_4 0.64

Fig. 13   Results of the three PLS regression model for predicting the 
EAWMI. The black curve represents the observed EAWMI (1967–
2012). The results for the 1967–2001 period are the reconstructed 
EAWMI, while those for the 2002–2012 period are the 11-year hind-
cast. The vertical purple curve denotes 2002. The combined model 

output is the blue curve, SST-based model orange curve, and ESC-
based model green curve. Corr0 represents the correlation coeffi-
cients between the observed and reconstructed EAWMI (1967–2001), 
while Corr1 the correlation coefficients for the observed and hindcast 
EAWMI (2002–2012)

Table 2   Correlation (CORR.) and root mean square error (RMSE) 
between observed and predicted values of CanCM3/4 and PLS mod-
els during the training and testing periods

The bold values represent the best performer

Model Training (1967–2001) Testing (2002–2012)

RMSE CORR RMSE CORR

SST model 0.79 0.69 0.71 0.74
Snow model 0.42 0.92 0.60 0.84
C_model 0.39 0.98 0.59 0.86
CanCM3/4 – – 0.80 0.69
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observations during training and prediction period. 
The correlation coefficient for the observed and SST-
based model predicted EAWMI is 0.74 (RMSE = 0.71), 
whereas that of the ESC-based model (Corr.  =  0.84, 
RMSE = 0.60) is higher than the SST model. This high-
lights the importance of the ESC in the EAWM predic-
tion. Moreover, if we use the combination of the ESC and 
SST to predict the EAWMI, the prediction skill reaches 
the highest (Corr = 0.86, RMSE = 0.59).

In general, all three PLS models show promising skills in 
the EAWM prediction, superior to the hindcast results from 
CanCM3/4. The ESC might contribute more to the predic-
tion skill than SST as far as the latest 11-year hindcast is 
concerned. The PLS model established by the combination 
of the ESC and SST achieves the best performance.

6 � Conclusion and discussion

Seasonal prediction of the EAWM has long been a chal-
lenging issue and receives increasing attention recently 
due to the higher frequency of the extreme weather events 
(Wen et al. 2009; Seager et al. 2010; Wang et al. 2010; Wu 
et  al. 2011; Lin and Wu 2012). To identify potential pre-
dictability sources of the EAWM, we use the PLS regres-
sion to identify the leading SST and ESC modes preced-
ing the abnormal EAWM. The SST PLS1 mode is usually 
associated with the ENSO cycle and SST anomalies in the 
North Atlantic. These autumn SST forcings may provide an 
essential predictability source for the EAWM (Zhang et al. 
1998; Frankignoul and Sennechael 2007) or AO pattern 
(Kim and Ahn 2012). The ESC PLS1 mode exhibits conti-
nental-scale snow cover anomalies centered in the Siberian 
region and expanding towards Tibetan Plateau, favoring 
the enhancement (or weakening) of SMH. The ESC PLS2 
and PLS3 modes correspond to the distinct northern and 
southern EAWM modes suggested by Wang et al. (2010), 
respectively. The four PLS modes of the combination of the 
ESC and SST is basically the admixture of the sole SST 
and ESC PLS modes.

To examine relative contributions of SST and the ESC, 
three PLS models are established based on a 35-year train-
ing period (1967–2001). The 11-year hindcast is performed 
for the period of 2002–2012 for each PLS model. Results 
manifest that the ESC-based model exhibits a higher skill 
than the SST-based, highlighting the importance of the 
autumn ESC in the EAWM prediction (Jhun and Lee 2004; 
Wang et  al. 2010). Furthermore, the PLS model based 
on both the ESC and SST achieves the best performance 
among the three models. This combined PLS model may 
provide a useful reference for the practical seasonal predic-
tion of the EAWM.

This work emphasizes effects of autumn snow cover 
and SST in seasonal prediction of the EAWM. It should 
be mentioned that besides the ESC and SST, other low 
boundary forcings, i.e., Arctic sea ice, are also considered 
as critical modulators on the NH winter climate (Wu et al. 
2011; Li and Wu 2012; Liu et  al. 2012). Then, how well 
would the PLS model predict the EAWM variations with 
the Arctic sea ice added? Besides, we use the autumn ESC 
and SST to predict the EAWM in this paper. If predictors 
in an earlier season, i.e., prior summer, are used in the PLS 
model, how well would the performance of the PLS model 
change? These are still outstanding issues and call for fur-
ther studies.
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