

Enhanced Performance of Ceria-Based NO_x Reduction Catalysts by **Optimal Support Effect**

Junxiao Chen,^{†,§} Yaxin Chen,^{†,§} Meijuan Zhou,[†] Zhiwei Huang,[†] Jiayi Gao,[†] Zhen Ma,[†] Jianmin Chen,[†] and Xingfu Tang^{*,†,‡}

Supporting Information

ABSTRACT: CeO2-based catalysts have attracted widespread attention in environmental-protection applications, including selective catalytic reduction (SCR) of NO by NH₃, and their catalytic performance is often intimately associated with the supports used. However, the issue of how to choose the supports of such catalysts still remains unresolved. Herein, we systematically study the support effect in SCR over CeO₂-based catalysts by using three representative supports, Al₂O₃, TiO₂, and hexagonal WO₃ (HWO), with different acidic and redox properties. HWO, with both acidic and reducible properties, achieves an optimal support effect; that is, CeO₂/HWO exhibits higher catalytic activity than CeO₂ supported on acidic Al₂O₃ or reducible TiO₂. Transmission electron microscopy and X-ray diffraction techniques demonstrate that acidic supports (HWO and

Al₂O₃) are favorable for the dispersion of CeO₂ on their surfaces. X-ray photoelectron spectroscopy coupled with theoretical calculations reveals that reducible supports (HWO and TiO₂) facilitate strong electronic CeO₂-support interactions. Hence, the excellent catalytic performance of CeO₂/HWO is mainly ascribed to the high dispersion of CeO₂ and the optimal electronic CeO₂-support interactions. This work shows that abundant Brønsted acid sites and excellent redox ability of supports are two critical requirements for the design of efficient CeO₂-based catalysts.

■ INTRODUCTION

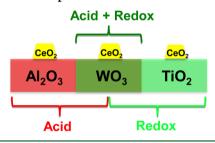
Nitrogen oxides (NO_x) emitted from stationary and mobile sources have raised significant concern due to their great contribution to acid rain and photochemical smog. Selective catalytic reduction (SCR) of NO_x with NH₃ is one of the most promising abatement technologies. V_2O_5 -based catalysts have been used commercially for SCR, ²⁻⁴ but the toxicity of vanadium limits their widespread application. In response to increasingly stringent environmental regulations, it is desirable to develop environmentally benign catalysts to control NO_x emissions efficiently. CeO2 is an environmentally friendly active component of such efficient catalysts for SCR, 5-7 owing to its excellent oxygen storage/release ability via the Ce^{4+}/Ce^{3+} redox cycle.8,9

Supports can influence the catalytic performance of ${\rm CeO_2}$ -based catalysts dramatically. $^{10-13}$ To rationally design efficient supports, a clear understanding of the SCR mechanism and the synergistic CeO2-support effect is necessary. Eley-Rideal and Langmuir-Hinshelwood models are often used to describe the SCR mechanisms for CeO₂-based catalysts, and the adsorption and activation of NH₃ are regarded as two key steps in both models. 14 NH3 that participates in the SCR reactions was found to be mostly adsorbed on Brønsted acid sites and subsequently

activated.¹⁵ Therefore, supports with abundant Brønsted acid sites and the ability to enhance the redox property of CeO₂ are favorable for NH3 adsorption and activation. An excellent support can not only allow CeO_2 to be highly dispersed on the supports' surfaces but also induce synergistic CeO2-support interactions. Supports with acidic properties, especially those with abundant Brønsted acid sites such as Al₂O₃^{12,16} and WO_3 , 17,18 are beneficial for the dispersion of CeO_2 nanoparticles with basic properties. Reducible supports such as TiO₂ and WO₃ are often used to provoke CeO₂-support interactions via redox reactions. Thus, supports with both abundant acid sites and excellent redox properties should be ideal for the design of CeO₂-based catalysts for SCR, but a systematic study of support effect is still lacking.

Al₂O₃, TiO₂, and WO₃ with different acid and redox properties have been used to prepare CeO2-based SCR catalysts. 16-20 For instance, CeO₂ supported on acidic Al₂O₃ achieved high SCR activity at 250-350 °C. ¹² CeO₂/TiO₂ gave

August 11, 2016 Received: Revised: November 10, 2016 Accepted: December 2, 2016 Published: December 2, 2016


[†]Institute of Atmospheric Sciences, Shanghai Key Laboratory of Atmospheric Particle Pollution & Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China

Fliangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China

almost complete conversion of NO in a wide temperature window (200-400 °C) because of the strong CeO₂-TiO₂ interactions via the surface Ce-O-Ti bridging bonds. ¹⁹ Owing to the acid property and redox characteristics of WO₃, CeO₂/ WO₃ showed extraordinary catalytic performance in SCR at 200-450 °C even at a high gas hourly space velocity (GHSV).²¹ However, these catalysts were tested under quite different conditions, thus making the comparison of their intrinsic activities impossible. Therefore, it is desirable to distinguish the support effect under identical conditions to choose suitable supports for CeO₂-based catalysts.

In this work, we study the support effect in SCR over CeO₂based SCR catalysts by using Al₂O₃, TiO₂, and hexagonal WO₃ (HWO) as representative supports (Scheme 1). The activities

Scheme 1. Illustration Showing the Design of CeO2-based Catalysts with Three Representative Supports According to Acid and Redox Properties

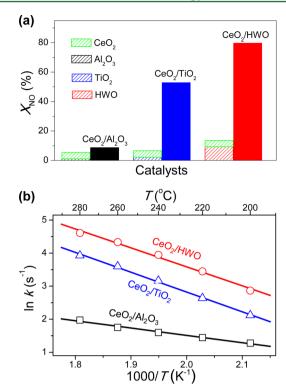
of these CeO2-based catalysts were tested under the same conditions, and these catalysts were characterized by various techniques such as transmission electron microscopy (TEM), synchrotron X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature-programmed reduction (H₂-TPR). A conclusion on how to design efficient CeO₂-based SCR catalysts was then reached. This work could assist the design of improved SCR catalysts from the support effect point of view.

MATERIALS AND METHODS

Materials Preparation. HWO was prepared by a hydrothermal method.²² Briefly, a solution composed of (NH₄)₁₀W₁₂O₄₁ (0.7 mmol), (NH₄)₂SO₄ (63.0 mmol), oxalic acid (23.3 mmol), and deionized water (80 mL) was sufficiently mixed, transferred to a 100 mL autoclave, and put into an oven at 180 °C for 12 h via rotary hydrothermal treatment. The obtained slurry was filtered, washed with deionized H2O, and dried at 105 °C. CeO_2/MO_x (M = Al, Ti, or W) was prepared by precipitation: MO_x (2.00 g) was mixed with 50 mL of CeCl₃ (43 mM) solution, and 10 mL of NH₃·H₂O (2.5 wt %) solution was then added. The suspension was aged for 0.5 h and then centrifuged at 8500 rpm. The product was washed with deionized water three times, dried at 105 °C for 12 h, and calcined at 400 °C for 4 h.

Catalytic Evaluation. SCR was performed in a fixed-bed quartz reactor (i.d. = 8 mm) under atmospheric pressure. The mixed feed gas contained 500 ppm of NO, 500 ppm of NH₃, 3.0 vol % O₂₁ and balance N₂. The total flow rate was 1000 mL· min⁻¹. For each run, a certain amount of catalyst (40-60 mesh) was charged. Different GHSVs were adopted by changing the volumes of catalysts. The concentrations of NO and NO2 in the inlet and outlet gas were measured by an online chemiluminescence NO-NO₂-NO_x analyzer (42i-HL, Thermo Electron Corp.). Data were recorded after the reactions reached a steady state.

Materials Characterization. TEM, high-resolution transmission electron microscopy (HRTEM), and dark-field scanning transmission electron microscopy (STEM) studies and energy-dispersive X-ray spectroscopy (EDX) mapping were conducted on a JEM 2100F transmission electron microscope. SXRD patterns were obtained at BL14B of the Shanghai Synchrotron Radiation Facility (SSRF) at a wavelength of 1.2398 Å. XPS analysis was undertaken on a Kratos Axis Ultra-DLD system with a charge neutralizer and a 150 W Al (Mono) X-ray gun (1486.6 eV) with a delay-line detector (DLD). The binding energy of the samples was calibrated according to C 1s XPS at a binding energy of 284.6 eV. Curve fitting was carried out by use of XPSPEAK 4.1 with a Shirley background. H2-TPR experiments were performed on a 2920 adsorption instrument (Micromeritics) with a thermal conductivity detector (TCD) to monitor the consumed H₂. H₂-TPR was conducted at 10 °C· min^{-1} in a 50 $mL{\cdot}min^{-1}$ flow of 5 vol % H_2 in Ar.


Theoretical Calculations. The structures of the HWO (100) surface, before and after Ce loading by adding ~15 Å vacuum, were optimized by the Vienna ab initio simulation package (VASP). Density functional theory (DFT) calculations were performed in the whole calculation process. General gradient approximation (GGA) pseudopotentials were used to express the exchange and correlation effects, and pseudopotentials of the projector augmented wave method were used to describe interactions between the core and valence electrons. The energy cutoff for the plane waves was set to 450 eV. The kpoint sampling was generated with a 2 × 4 × 1 Monkhorst-Pack grid. Lattice constants of the conventional hexagonal HWO cell with space group P6/mmm and the threedimensional (3D) periodic-slab model of HWO (100) surface before and after Ce addition are 7.319 Å \times 7.319 Å \times 3.881 Å, $14.924 \text{ Å} \times 7.456 \text{ Å} \times 26.482 \text{ Å}, \text{ and } 15.057 \text{ Å} \times 7.419 \text{ Å} \times$ 26.698 Å by optimizing geometries, respectively.

■ RESULTS AND DISCUSSION

The catalytic activities of CeO₂, supported CeO₂ catalysts, and corresponding supports were tested under the same conditions. A high GHSV of 300 000 h⁻¹ was adopted to distinguish the catalytic activities. The NO conversions (X_{NO}) at 300 °C are shown in Figure 1a, and the X_{NO} values as a function of reaction temperature are shown in Figure S1. CeO₂ and three supports give only very low X_{NO} , whereas the SCR activities of supported CeO₂ catalysts are obviously enhanced. The catalytic activities follow the sequence $CeO_2/HWO > CeO_2/TiO_2 > CeO_2/$ Al₂O₃. The reaction kinetics of SCR over CeO₂/Al₂O₃, CeO₂/ TiO_2 , and CeO_2/HWO were studied at low X_{NO} , and the steady-state reaction rates are shown in an Arrhenius plot (Figure 1b). The apparent activation energy (E_a) for CeO_2 / HWO is ~48 kJ·mol⁻¹, slightly lower than that (50 kJ·mol^{-1}) for CeO₂/TiO₂, whereas the pre-exponential factor for CeO₂/ HWO is 3.5×10^6 s⁻¹, larger than the corresponding value (2.7 \times 10⁶ s⁻¹) for CeO₂/TiO₂ (Table S1). A significantly smaller pre-exponential factor for CeO₂/Al₂O₃ gives a good explanation for its low activity although it has a low activation energy.

According to the well-established reaction mechanisms that involve commercial V₂O₅-based catalysts, ^{23,24} two important cycles, acid-site and redox cycles, are involved in SCR. These cycles almost simultaneously occur on the adjacent dual sites of HO-V-O-V=O (V-OH is a Brønsted acid site and V=O is responsible for activation of NH₃) for NH₃ adsorption and

Environmental Science & Technology

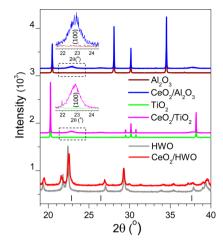


Figure 1. (a) $X_{\rm NO}$ over three ${\rm CeO_2}$ -based catalysts together with their supports and pure ${\rm CeO_2}$. Reaction conditions: 300 °C, 500 ppm of NO, 500 ppm of NH₃, 3 vol % ${\rm O_2}$ balance N₂, and GHSV 300 000 h⁻¹. (b) Arrhenius plot for ${\rm CeO_2/Al_2O_3}$, ${\rm CeO_2/TiO_2}$ and ${\rm CeO_2/HWO}$ in SCR.

activation. 25,26 Presumably, such adjacent dual sites are present at the periphery of the interface between CeO₂–Al₂O₃ or CeO₂–HWO, because CeO₂ has redox property and both Al₂O₃ and HWO are acidic supports. The presence of adjacent dual sites may partly explain the higher activity of CeO₂/Al₂O₃ and CeO₂/HWO compared with CeO₂ alone. Although TiO₂ normally has fewer Brønsted acid sites on its surface, CeO₂/TiO₂ is even more active than CeO₂/Al₂O₃, indicating that the redox property may be indispensable to reach high activity in SCR

Figure 2 shows the SXRD patterns of the samples. The diffraction of Al_2O_3 , TiO_2 , and HWO can be readily indexed to corundum, hexagonal, and anatase structures, respectively. When 12 wt % CeO_2 is loaded, the structures of supports are almost preserved. The weak reflection assigned to crystalline CeO_2 can be discerned for both CeO_2/Al_2O_3 and CeO_2/HWO , and the CeO_2 nanoparticles of CeO_2/HWO are smaller than those of CeO_2/Al_2O_3 because the latter has relatively stronger peaks due to CeO_2 (insets, Figure 2). This implies the presence of strong CeO_2-HWO interactions. Moreover, the size of CeO_2 on TiO_2 is slightly bigger than that of CeO_2 on Al_2O_3 according to the intensity of CeO_2 in the SXRD patterns. Thus, the dispersion of CeO_2 nanoparticles is much easier on acidic supports than on basic supports. $Il_{1,27}$

Figure 3 shows TEM and HRTEM images of supported CeO₂ catalysts. CeO₂ nanoparticles, with a sub-10 nm size, are highly dispersed on Al₂O₃ (Figure 3a,b).¹² However, CeO₂ nanoparticles with sizes larger than 10 nm can be observed on TiO₂ (Figure 3c,d). By comparison of the TEM images of HWO (Figure S2) and CeO₂/HWO (Figure 3e), it is relatively difficult to distinguish CeO₂ from HWO (Figure 3e,f) because

Figure 2. SXRD patterns of CeO_2/Al_2O_3 , CeO_2/TiO_2 , and CeO_2/HWO with their supports. Short vertical lines show the possible Bragg positions of CeO_2 diffraction.

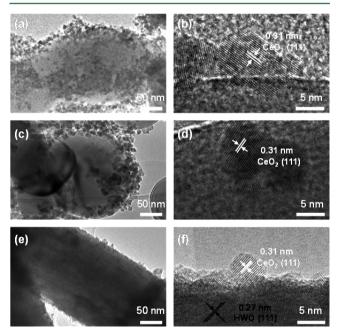
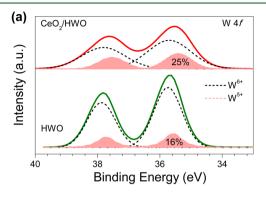



Figure 3. TEM and HRTEM images of (a, b) CeO_2/Al_2O_3 , (c, d) CeO_2/TiO_2 , and (e, f) CeO_2/HWO .

the atomic number of Ce is only slightly smaller than that of W. According to EDX mapping (Figure S3), the Ce species are highly dispersed on HWO nanorods. In the HRTEM images of Figure 3, fringes with a separation distance of $\sim\!0.31$ nm are observed in three samples, which can be ascribed to the CeO2(111) planes. Although the Ce species are also highly dispersed on TiO2 and Al2O3 (Figures S4 and S5), it is clear that the CeO2 nanoparticles supported on acidic Al2O3 and HWO are smaller than those on TiO2, indicating that supports with abundant Brønsted sites make basic CeO2 nanoparticles highly dispersed on the surfaces through acid—base interactions. In contrast, bigger CeO2 nanoparticles are formed on basic TiO2 support due to the absence of acid—base interactions.

The electronic states of the catalysts were studied by XPS. For nonreducible Al₂O₃ support, there is no strong CeO₂–Al₂O₃ interaction because no distinct shift is observed in the Al 2p XPS before and after CeO₂ loading (Figure S6). Note that

for reducible HWO and TiO2, the supported CeO2 significantly changes the electronic states of the surface W and Ti species. According to curve-fitting of the XPS data, ~9% of surface W⁶⁺ species transform into W⁵⁺ species when CeO₂ is loaded onto HWO (Figure 4a). Likewise, when CeO₂ is loaded onto TiO₂,

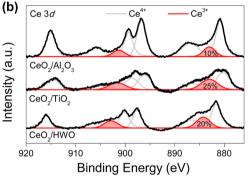


Figure 4. (a) W 4f XPS of HWO and CeO2/HWO and (b) Ce 3d XPS of the catalysts.

 \sim 50% of surface Ti⁴⁺ on TiO₂ transform into Ti³⁺ (Figure S7). These results demonstrate that the redox properties of HWO and TiO₂ induce strong CeO₂-support interactions.

The Ce 3d XPS data for CeO₂/Al₂O₃, CeO₂/HWO, and CeO₂/TiO₂ are shown in Figure 4b, and curve-fitting was applied to calculate the surface $Ce^{3+}/(Ce^{4+} + Ce^{3+})$ ratio (R_{Ce}^{3+}) . R_{Ce}^{3+} of $\text{CeO}_2/\text{Al}_2\text{O}_3$ is ~10%, whereas the R_{Ce}^{3+} values of CeO2/HWO and CeO2/TiO2 are ~20% and ~25%, respectively, implying that the CeO2-support interactions of the latter two catalysts are stronger. When it is considered that the CeO2-Al2O3 interaction is weak, the presence of a small portion of Ce³⁺ on CeO₂/Al₂O₃ may be due to the presence of some surface defects. For CeO₂/TiO₂, in view of the presence of a significant amount of Ti3+ on the surfaces (Figure S7) and the basic medium during the preparation, the high R_{Ce}^{3+} value might imply the formation of CeTiO₃, which can provide the catalytically active Ce-O-Ti structure for SCR. 19 As for CeO_2/HWO , the high R_{Ce}^{3+} value is beneficial for enhancement of the redox ability³⁰ and thereby the SCR activity.¹⁸

The reducibility of the catalysts was investigated by H2-TPR (Figure 5). In the temperature range 250-450 °C, no reduction peak is observed in the H2-TPR profile of Al2O3. An onset of the weak reduction peaks of TiO2 can be discerned at ~320 °C. The reduction peaks are very weak for CeO₂/ Al_2O_3 and CeO_2/TiO_2 . A weak peak at ~330 °C appears in the CeO₂ profile, and a very strong reduction peak of the HWO support starts at the same reduction temperature of ~330 °C, which shifts down to a low-onset temperature of ~260 °C for

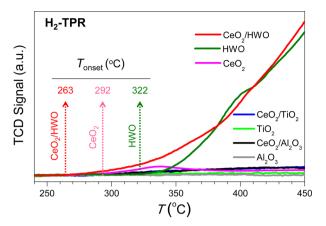
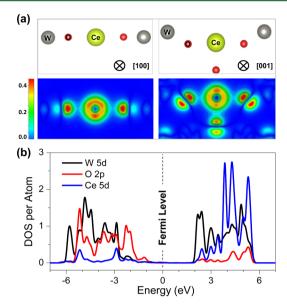



Figure 5. H₂-TPR profiles of supported CeO₂ catalysts together with their supports and pure CeO_2 . The onset temperatures (T_{onset}) of CeO₂/HWO, CeO₂, and HWO are also shown.

CeO₂/HWO, indicating the surface oxygen species of CeO₂/ HWO have a strong redox ability at low temperatures. The downshift of the low-temperature reduction peak might be mainly ascribed to surface oxygen species of the Ce-O-W structure, which play an important role in SCR. Janssen et al.²³ used labeled oxygen to verify that lattice oxygen participates in the SCR reaction through a reduction/oxidation mechanism over traditional V₂O₅-based catalysts, and Topsøe reported similar results, 25 which can be applicable to current CeO₂/ HWO catalysts.²¹ Often, redox ability is closely associated with SCR activity, and the stronger the redox ability, the higher the SCR activity.³¹ Possibly, the low-temperature redox property of CeO₂/HWO accounts for its high catalytic reactivity at low temperature, leading to the highest catalytic activity among the three CeO2-based catalysts.

As for supported metal oxide catalysts, it was reported that surface A-O-S bridging bonds are intimately associated with catalytic performance (A and S represent cations of active components and supports, respectively).32-35 The highest catalytic performance of CeO₂/HWO might originate from the number and activation ability of Ce-O-W bridging bonds, because CeO2/HWO possesses smaller CeO2 nanoparticles (Figures 2 and 3) and higher reducible properties (Figure 5). Essentially, the electronic states of Ce-O-W structure are closely related to its activity. Hence, we carried out theoretical calculations based on the DFT method. The electronic density difference contours of Ce-O-W structure motif on HWO (100) and HWO (001) planes are depicted in Figure 6a. The electronic density of Ce overlaps with that of O in the Ce-O-W structure motif, indicating the presence of electronic interactions between CeO2 and HWO via Ce-O-W bridging bonds. Comparing with the DOS of W and O species of pure HWO support, we found that the Bader charges of both W and O increase after loading of CeO₂ on HWO (Table S2). These results agree fairly well with the XPS data that the amount of W⁵⁺ species increases and a downshift of the binding energy of O 1s orbitals appears after loading of CeO₂ on HWO (Figure S8). In fact, according to a recent report, ¹⁹ such an electronic interaction between CeO2 and reducible supports also exists in CeO₂/TiO₂ via Ce-O-Ti bridging bonds.

Figure 6b shows the density of states (DOS) of the Ce-O-W structure motif at the periphery of CeO₂-HWO interfaces. The DOS of W 5d, O 2p, and Ce 5d orbitals of the Ce-O-W structure motif appear at the same energy regime, demonstrat-

Figure 6. (a) Atom arrangements and corresponding differential charge density contours of HWO (100) and HWO (001) planes. (b) Projected DOS of the Ce–O–W structure motif for CeO₂/HWO.

ing the existence of hybridization of these orbitals to form molecular orbitals. The highest occupied molecular orbital (HOMO) is mainly composed of O 2p and W 5d orbitals, but the lowest unoccupied molecular orbital (LUMO) primarily consists of W 5d and Ce 5d and 4f orbitals (Figure S9).³⁶ The high DOS of O 2p levels is close in energy to the HOMO, which may readily provide electrons for SCR. As discussed above, there is a redox cycle in SCR, meaning the existence of electron transport between reactants and catalysts. Such electron transport should become much easier on CeO₂/ HWO with a very small energy difference among O 2p, Ce 5d and 4f, and W 5d orbitals regardless of the HOMO and LUMO levels. The electronic CeO2-HWO interactions produce the strong support effect responsible for high SCR activity. Therefore, an increase in CeO2 loading will increase the number of Ce-O-W structure motifs, thus increasing the SCR activity of CeO2/HWO, as confirmed in Figure S10, where CeO₂/HWO catalysts give increasingly high X_{NO} over a wide reaction temperature range when the CeO₂ loading reaches 8% in weight or more.

These results demonstrate that, for basic and redox CeO₂ active component, it is suitable to choose supports with acid and redox properties, which are favorable to disperse CeO₂ nanoparticles and to produce a strong support effect via surface Ce–O–M bridging bonds. The support effect originates from two important reactions between active components and supports: (i) acid–base reaction and (ii) redox reaction. The acid–base reaction generally determines the number of surface A–O–S bridging bonds, and the redox reaction governs the activation ability of the surface A–O–S bridging bonds, thus regulating catalytic performance.

For supported metal oxide catalysts, the choice of supports is essentially determined by the acid/base and redox properties of active components. On one hand, for basic metal oxides with redox properties, acid and reducible supports are desirable to enhance catalytic performance. For instance, MnO_x/WO₃ had much higher activity in oxidation reactions than MnO_x/CeO₂.³⁷ On the other hand, for acidic metal oxides with redox properties, basic and reducible supports should be more

suitable. Proft and co-workers³⁸ studied the support effect of acid VO_x catalysts and found that an increase in activity is observed according to the sequence $VO_x/ZrO_2 > VO_x/TiO_2 > VO_x/Al_2O_3 > VO_x/SiO_2$. Such a support effect originates from the nature of A–O–S structures with different electronic densities. Therefore, our results can possibly serve as a general strategy to design and develop efficient supported metal oxide catalysts.

In summary, we chose three representative supports, Al₂O₃, TiO₂, and HWO, according to their acidic properties and redox abilities and systematically studied the support effect of the CeO₂-based catalysts in SCR. The combination of characterization techniques and theoretical calculations demonstrated that Brønsted acidic supports are beneficial for improvement of the dispersed state of CeO2, besides adsorption of NH3 reactant in the SCR reaction, and that reducible supports facilitate the formation of the support effect through strong electronic CeO₂-support interactions. Therefore, the largest number and highest activation ability of the Ce-O-W bridging bonds are mainly responsible for the highest catalytic performance caompared with catalysts with an acidic Al₂O₃ or reducible TiO₂ support. This work provides a strategy to design supported metal oxide catalysts by optimizing the support effect.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b04050.

Description of calculating the rate constant of SCR; two tables listing pre-exponential factors and activation energies and Bader charges; 10 figures showing $X_{\rm NO}$ vs temperature, TEM image of HWO, STEM images and corresponding EDX mappings; Al 2p and Ti 2p and O 1s XPS, projected DOS of Ce-O-W structure motif, and $X_{\rm NO}$ of CeO₂/HWO with different CeO₂ loadings (PDF)

AUTHOR INFORMATION

Corresponding Author

*(X.T.) Phone +86-21-65642997; fax +86-21-65643597; e-mail tangxf@fudan.edu.cn.

ORCID

Xingfu Tang: 0000-0002-0746-1294

Author Contributions

These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was financially supported by the NSFC (21477023) and the STCSM (14JC1400400). The SXRD measurements were conducted at the SSRF.

REFERENCES

- (1) Finlayson-Pitts, B. J.; Pitts, J. N., Jr. Atmospheric Chemistry: Fundamentals and Experimental Techniques; John Wiley and Sons: New York, 1986.
- (2) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: A review. *Appl. Catal., B* **1998**, *18* (1-2), 1–36.

- (3) Lietti, L.; Nova, I.; Ramis, G.; Dall'Acqua, L.; Busca, G.; Giamello, E.; Forzatti, P.; Bregani, F. Characterization and reactivity of V₂O₅-MoO₃/TiO₂ de-NO_x SCR catalysts. *J. Catal.* **1999**, *187* (2), 419–435.
- (4) Granger, P.; Parvulescu, V. I. Catalytic NO_x abatement systems for mobile sources: From three-way to lean burn after-treatment technologies. *Chem. Rev.* **2011**, *111* (5), 3155–3207.
- (5) Shan, W.; Liu, F.; Yu, Y.; He, H.; Deng, C.; Zi, X. High-efficiency reduction of NO_x emission from diesel exhaust using a CeWO_x catalyst. *Catal. Commun.* **2015**, *59*, 226–228.
- (6) Liu, Z.; Fu, Y.; Tu, J.; Meng, M. Effect of CeO₂ on supported Pd catalyst in the SCR of NO: A DRIFT study. *Catal. Lett.* **2002**, *81* (3–4), 285–291.
- (7) Cheng, K.; Liu, J.; Zhang, T.; Li, J.; Zhao, Z.; Wei, Y.; Jiang, G.; Duan, A. Effect of Ce doping of TiO₂ support on NH₃-SCR activity over V₂O₅-WO₃/CeO₂-TiO₂ catalyst. *J. Environ. Sci.* **2014**, *26* (10), 2106–2113.
- (8) Zhang, X.; Klabunde, K. Superoxide (O²⁻) on the surface of heat-treated ceria. Intermediates in the reversible oxygen to oxide transformation. *Inorg. Chem.* **1992**, 31 (9), 1706–1709.
- (9) Yao, H. C.; Yao, Y. F. Y. Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal. 1984, 86 (2), 254–265.
- (10) Gao, X.; Jiang, Y.; Luo, Z.; Fu, Y.; Zhong, Y.; Cen, K. Preparation and characterization of CeO₂/TiO₂ catalysts for selective catalytic reduction of NO with NH₃. *Catal. Commun.* **2010**, *11* (5), 465–469.
- (11) Reddy, B. M.; Khan, A. Nanosized CeO₂-SiO₂, CeO₂-TiO₂, and CeO₂-ZrO₂ mixed oxides: Influence of supporting oxide on thermal stability and oxygen storage properties of ceria. *Catal. Surv. Asia* **2005**, 9 (3), 155–171.
- (12) Shen, Y.; Zhu, S.; Qiu, T.; Shen, S. A novel catalyst of CeO₂/Al₂O₃ for selective catalytic reduction of NO by NH₃. *Catal. Commun.* **2009**, *11* (1), 20–23.
- (13) Peng, Y.; Li, K.; Li, J. Identification of the active sites on CeO_2 – WO_3 catalysts for SCR of NO_x with NH_3 : An in situ IR and Raman spectroscopy study. *Appl. Catal., B* **2013**, *140*–*141*, 483–492.
- (14) Chen, L.; Li, J.; Ge, M. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NO_x with NH₃. *Environ. Sci. Technol.* **2010**, *44* (24), 9590–9596.
- (15) Peng, Y.; Li, J.; Chen, L.; Chen, J.; Han, J.; Zhang, H.; Han, W. Alkali metal poisoning of a CeO₂–WO₃ catalyst used in the selective catalytic reduction of NO_x with NH₃: An experimental and theoretical study. *Environ. Sci. Technol.* **2012**, *46* (5), 2864–2869.
- (16) Guo, R.; Zhou, Y.; Pan, W.; Hong, J.; Zhen, W.; Jin, Q.; Ding, C.; Guo, S. Effect of preparation methods on the performance of CeO₂/Al₂O₃ catalysts for selective catalytic reduction of NO with NH₃. *J. Ind. Eng. Chem.* **2013**, *19* (6), 2022–2025.
- (17) Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. Novel ceriumtungsten mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃. *Chem. Commun.* **2011**, 47 (28), 8046–8048.
- (18) Shan, W.; Geng, Y.; Chen, X.; Huang, N.; Liu, F.; Yang, S. A highly efficient CeWO_x catalyst for the selective catalytic reduction of NO_x with NH₃. Catal. Sci. Technol. **2016**, 6 (4), 1195–1200.
- (19) Li, P.; Xin, Y.; Li, Q.; Wang, Z.; Zhang, Z.; Zheng, L. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH₃: Confirmation of Ce-O-Ti active sites. *Environ. Sci. Technol.* **2012**, 46 (17), 9600–9605.
- (20) Liu, Z.; Zhang, S.; Li, J.; Ma, L. Promoting effect of MoO_3 on the NO_x reduction by NH_3 over CeO_2/TiO_2 catalyst studied with in situ DRIFTS. *Appl. Catal., B* **2014**, *144*, 90–95.
- (21) Chen, L.; Li, J.; Ablikim, W.; Wang, J.; Chang, H.; Ma, L.; Xu, J.; Ge, M.; Arandiyan, H. CeO₂-WO₃ mixed oxides for the selective catalytic reduction of NO_x by NH₃ over a wide temperature range. *Catal. Lett.* **2011**, *141* (12), 1859–1864.
- (22) Huang, Z.; Li, H.; Gao, J.; Gu, X.; Zheng, L.; Hu, P.; Xin, Y.; Chen, J.; Chen, Y.; Zhang, Z.; Chen, J.; Tang, X. Alkali- and sulfur-resistant tungsten-based catalysts for NO_x emissions control. *Environ. Sci. Technol.* **2015**, 49 (24), 14460–14465.
- (23) Janssen, F. J.; Van den Kerkhof, F. M.; Bosch, H.; Ross, J. R. Mechanism of the reaction of nitric oxide, ammonia, and oxygen over

- vanadia catalysts. I. The role of oxygen studied by way of isotopic transients under dilute conditions. *J. Phys. Chem.* **1987**, *91* (23), 5921–5927.
- (24) Janssen, F. J.; Van den Kerkhof, F. M.; Bosch, H.; Ross, J. R. Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts. 2. Isotopic transient studies with oxygen-18 and nitrogen-15. *J. Phys. Chem.* **1987**, *91* (27), 6633–6638.
- (25) Topsøe, N.-Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. *Science* **1994**, *265*, 1217–1219.
- (26) Topsøe, N. Y.; Topsøe, H.; Dumesic, J. A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: I. Combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies. *J. Catal.* **1995**, *151* (1), 226–240.
- (27) Reddy, B. M.; Khan, A.; Lakshmanan, P.; Aouine, M.; Loridant, S.; Volta, J. C. Structural characterization of nanosized CeO₂-SiO₂, CeO₂-TiO₂, and CeO₂-ZrO₂ catalysts by XRD, Raman, and HREM techniques. *J. Phys. Chem. B* **2005**, *109* (8), 3355–3363.
- (28) Tanaka, K. I.; Ozaki, A. Acid-base properties and catalytic activity of solid surfaces. *J. Catal.* **1967**, 8 (1), 1–7.
- (29) Dauscher, A.; Wehrer, P.; Hilaire, L. Influence of the preparation method on the characteristics of TiO₂-CeO₂ supports. *Catal. Lett.* **1992**, *14* (2), 171–183.
- (30) Kopelent, R.; van Bokhoven, J. A.; Szlachetko, J.; Edebeli, J.; Paun, C.; Nachtegaal, M.; Safonova, O. V. Catalytically active and spectator Ce³⁺ in ceria-supported metal catalysts. *Angew. Chem., Int. Ed.* **2015**, *54* (30), 8728–8731.
- (31) Lietti, L.; Nova, I.; Forzatti, P. Selective catalytic reduction (SCR) of NO by NH₃ over TiO₂-supported V₂O₅-WO₃ and V₂O₅-MoO₃ catalysts. *Top. Catal.* **2000**, *11* (1), 111–122.
- (32) Briand, L. E.; Farneth, W. E.; Wachs, I. E. Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts: I. Fundamentals of the methanol chemisorption technique and application to monolayer supported molybdenum oxide catalysts. *Catal. Today* **2000**, *62* (2), 219–229.
- (33) Gao, X.; Wachs, I. E. Molecular engineering of supported vanadium oxide catalysts through support modification. *Top. Catal.* **2002**, *18* (3–4), 243–250.
- (34) Banares, M. A.; Wachs, I. E. Molecular structures of supported metal oxide catalysts under different environments. *J. Raman Spectrosc.* **2002**, 33 (5), 359–380.
- (35) Keller, D. E.; Airaksinen, S. M.; Krause, A. O.; Weckhuysen, B. M.; Koningsberger, D. C. Atomic XAFS as a tool to probe the reactivity of metal oxide catalysts: Quantifying metal oxide support effects. J. Am. Chem. Soc. 2007, 129 (11), 3189–3197.
- (36) Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K. C.; Matolín, V.; Neyman, K. M.; Libuda, J. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. *Nat. Mater.* **2011**, *10* (4), 310–315.
- (37) Amini, M.; Pourbadiei, B.; Ruberu, T. P. A.; Woo, L. K. Catalytic activity of $\mathrm{MnO}_x/\mathrm{WO}_3$ nanoparticles: Synthesis, structure characterization and oxidative degradation of methylene blue. *New J. Chem.* **2014**, 38 (3), 1250–1255.
- (38) Fievez, T.; Weckhuysen, B. M.; Geerlings, P.; Proft, F. D. Chemical reactivity indices as a tool for understanding the support-effect in supported metal oxide catalysts. *J. Phys. Chem. C* **2009**, *113* (46), 19905–19912.