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Abstract    Using the conditional nonlinear optimal perturbation (CNOP) approach, sensitive areas of adaptive observation for
predicting the seasonal reduction of the upstream Kuroshio transport (UKT) were investigated in the Regional Ocean Modeling
System (ROMS). The vertically integrated energy scheme was utilized to identify sensitive areas based on two factors: the specific
energy scheme and sensitive area size. Totally 27 sensitive areas, characterized by three energy schemes and nine sensitive area
sizes, were evaluated. The results show that the total energy (TE) scheme was the most effective because it includes both the
kinetic and potential components of CNOP. Generally, larger sensitive areas led to better predictions. The size of 0.5% of the model
domain was chosen after balancing the effectiveness and efficiency of adaptive observation. The optimal sensitive area OSen was
determined accordingly. Sensitivity experiments on OSen were then conducted, and the following results were obtained: (1) In
OSen, initial errors with CNOP or CNOP-like patterns were more likely to yield worse predictions, and the CNOP pattern was the
most unstable. (2) Initial errors in OSen rather than in other regions tended to cause larger prediction errors. Therefore, adaptive
observation in OSen can be more beneficial for predicting the seasonal reduction of UKT.
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1.    Introduction
The Kuroshio Current (KC) originates where the North Equa-
torial Current (NEC) encounters the Philippine coast and bi-
furcates into the Mindanao Current (MC) and the KC. After
flowing along the Taiwan coast, through the East China Sea
and past the southern coast of Japan, the KC then flows east-
ward to form the Kuroshio extension (Nitani, 1972). The up-
stream Kuroshio generally refers to the KC from the NEC
bifurcation to south of Taiwan. As the origin of the sub-
tropical gyre in North Pacific, the variation of the upstream
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Kuroshio transport (UKT) has considerable influence on cli-
mate change, oceanic circulation structures and ecological
environments (Hu et al., 2015; Rudnick et al., 2015). There-
fore, accurately forecasting variations of UKT is of great sig-
nificance.
Previous studies have indicated that UKT generally under-

goes rapid reduction in autumn (Qiu and Lukas, 1996; Yarem-
chuk and Qu, 2004; Kang et al., 2011; Qu et al., 1998),
hereinafter called the seasonal reduction of UKT. Such sea-
sonal transport reduction may occur for different durations
and with different reduction magnitudes, and this consider-
able variability makes its accurate forecast challenging (Qiu
and Lukas, 1996; Yaremchuk and Qu, 2004; Cai et al., 2009;
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Kang et al., 2011). As is well known numerical forecast per-
formances are sensitive to the accuracy of initial conditions
(ICs; e.g., Mu, 2013; Mu et al., 2015; Majumdar, 2016); re-
liable ICs are more likely to yield good forecasts. Moreover,
recent studies focused onKC predictability have revealed that
initial errors can have dramatic influence on forecasting the
variation of the KC (Fujii et al., 2008; Wang et al., 2013).
Therefore, providing more reliable ICs could be an effective
way to improve predictions of the seasonal reduction of UKT.
Observation data assimilation is a common way to obtain

better ICs for numerical predictions (e.g., Tang et al., 2004;
Onken et al., 2005; Farrara et al., 2013). As field-deployed
observations are costly and cannot fully cover the vast space
of the forecasted events, observation strategies on guiding
where limited observations should be deployed are urgently
needed. Adaptive observation (or targeted observation) is one
such strategy developed since the 1990s (e.g., Palmer et al.,
1998; Langland, 2005), aiming to better predict events by im-
plementing additional observations in specific regions (called
sensitive areas). Adaptive observation was first applied in at-
mospheric fields; therefore, the improved prediction skills for
many meteorological applications, such as weather forecast,
El Niño-Southern Oscillation (ENSO) forecast and tropical
cyclone (TC) forecast, have benefited greatly from this strat-
egy (Morss et al., 2001; Duan and Mu, 2006; Wu et al., 2007;
Qin and Mu, 2011; Hu and Duan, 2016). So far, oceanic
applications of adaptive observation remain limited (Wang
et al., 2013; Li et al., 2014), although such applications are
promising to mitigate the greater costs of oceanic field-de-
ployed observations.
A vital issue in adaptive observation is identifying sensi-

tive areas, which are the optimal locations for observation.
Multiple strategies for identifying sensitive areas have been
developed since the mid-1990s. Some strategies employ the
ensemble technique, such as the ensemble transform Kalman
filter (Bishop et al., 2001) and the ensemble Kalman filter
(Hamill and Snyder, 2002), whereas some employ the adjoint
technique, such as with singular vectors (SVs; Palmer et al.,
1998), adjoint sensitivities (Ancell and Mass, 2006) and the
adjoint-derived sensitivity steering vector (Wu et al., 2007).
Recently, Mu et al. (2009) utilized the conditional nonlinear
optimal perturbation (CNOP) approach for adaptive obser-
vation of the North Pacific typhoon prediction. The CNOP
approach is a nonlinear method used to identify the optimal
initial error causing the largest prediction error (Mu et al.,
2003). Therefore, this approach is able to delineate sensitive
areas in nonlinear forecast systems. To date, CNOP has been
successfully applied to determine sensitive areas for predict-
ing ENSO (Duan et al., 2004; Yu et al., 2012), TCs (Tan et al.,
2010; Qin and Mu, 2011; Zhou and Mu, 2012), the Kuroshio
large meander (Wang et al., 2013) and the ocean state of the
South China Sea (Li et al., 2014).

Previous studies have indicated that UKT variation is in-
fluenced by nonlinear processes at various time-scales, such
as ENSO, monsoons and meso-scale eddies (e.g., Qiu and
Lukas, 1996; Kim et al., 2004; Lien et al., 2014). Nonlin-
ear CNOP-based adaptive observation therefore is feasible
for improving the prediction of UKT variation. The Regional
Ocean Modeling System (ROMS) is a widely used 3-D op-
erational model that simulates the KC well (Zhu et al., 2015;
Zhang et al., 2016). Therefore, using the ROMS simulation
and the CNOP approach, this study is conducted to identify
the optimal sensitive area in adaptive observation for predict-
ing the seasonal reduction of UKT.

2.    Model and methodology

2.1    Model simulation

We use the ROMS model to simulate the Kuroshio. The
ROMS is a 3-D, hydrostatic, free-surface model developed
for regional ocean simulation (Song and Haidvogel, 1994).
It employs the vertical terrain-following coordinate system
and the generalized horizontal orthogonal curvilinear coordi-
nate system and provides a series of horizontal diffusion and
vertical mixing parameterization schemes (Shchepetkin and
McWilliams, 2003, 2005). For this study, we select harmonic
horizontal mixing (Wajsowicz, 1993) and K-profile vertical
parameterization (Large et al., 1994). The adjoint model of
the ROMS (Moore et al., 2004) is also used with the same
settings as the nonlinear model.
The selected model domain is within 0.3°‒29°N and

112°‒162°E. A resolution of 1/8° and 32 vertical levels are
adopted, yielding 400×240×32 grids in total. The topography
is interpolated from the worldwide 2-min gridded bathymetry
dataset ETOPO2, and these data are then smoothed to avoid
large pressure gradients. The initial temperature and salin-
ity in January are interpolated from monthly climatology
means of the Simple Ocean Data Assimilation (SODA) 2.2.4
datasets (Carton and Giese, 2008). The initial free-surface
elevation and velocity are zero. Surface forcing is de-
rived from monthly climatology data of the Comprehensive
Ocean-Atmosphere Data Set (COADS; Diaz et al., 2002). All
lateral boundaries are open, with boundary data interpolated
from the monthly SODA climatology. Moreover, different
boundary conditions are chosen for different variables.
Specifically, we adopt the Chapman boundary condition
for sea surface height, the Flather boundary condition for
barotropic velocity and gradient boundary conditions for 3-D
velocity, temperature and salinity (Marchesiello et al., 2001).
The model runs for 40 years, and the output data of the last

25 years are used. The validation of the simulated oceanic
currents and UKT variation has been described in Zhang et
al. (2016). The results show that the NEC-MC-KC (NMK)
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system is successfully reproduced and that the simulated up-
stream Kuroshio coincides well with both ocean observations
and reanalysis. Moreover, the seasonal reduction of UKT is
also well simulated, of which UKT is defined as the north-
ward current flowing through the target section S (i.e., the
section extending from the Philippine coast to 124°E in the
upper 600 m at 18°N).

2.2    CNOP approach and calculation

The CNOP approach and its calculation are briefly described
in this subsection. The solution of a nonlinear model is de-
noted as:

X XM ( ),t t 0= (1)

where,X0 andXt are the state vectors at the initial time and the
future time t, respectively, andMt is the propagator of the non-
linear ROMS model used to propagate X0 to Xt. If an initial
error x0 satisfying the initial condition constraint x

A0 is
superimposed on the initial state X0, the following constraint
optimization problem exists:
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(2)
where, J(x0) is the objective function used to estimate the non-
linear evolution of x0 at the prediction time. The optimal ini-
tial error x 0 that solves eq. (2) is called the CNOP-type initial
error or CNOP (Mu et al., 2003).
In practice, the objective function and the initial constraint

are defined according to the specific problem addressed. To
evaluate the impacts of error evolution on UKT prediction,
the objective function is selected as the square of UKT change
induced by initial errors, which is expressed as follows:
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= (3)

where, v t denotes the meridional velocity anomaly induced
by initial errors at forecast time t, and S is the target section.
The initial constraint is selected as total energy (TE, sum of

kinetic and potential energy) of the initial errors in the entire
domain V (Moore et al., 2003; Fujii et al., 2008), which is
expressed as:
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where, g and N0 are the gravitational acceleration and the
Brunt-Väisälä frequency of the ICs, respectively; 0, 0,
u 0 and v 0 denote the free-surface elevation, density, and the
zonal and meridional velocity components of initial errors.
The density perturbation is calculated using the linear state
equation:

T S( ),ref= + (5)

where, α=−1.7×10−4 kgm−3K−1 and β=−1.7×10−4 kgm−3 psu−1
denote the expansion coefficients for temperature and salinity,
respectively; ρ=1027 kg m−3 is the reference density. The
constraint radius δ is set to 5×106 J1/2, which ensures stable
model integration and keeps UKT changes caused by initial
errors within an appropriate range.
To compute CNOP, a typical seasonal transport reduction

event (the reference state) is chosen. This event lasts for about
twomonths, beginning in August (Model Day 6335) and end-
ing in October (Model Day 6399). The UKT of the reference
state undergoes a rapid decrease by approximately 8.0 Sv (1
Sv=106 m3 s‒1) during this period. Based on these settings,
CNOP is determined using the Spectral Projected Gradient 2
(SPG2) optimization algorithm (Birgin et al., 2000). As de-
scribed by Zhang et al. (2016), the CNOP-type errors are
mainly distributed within 127°‒130°E and 16°‒18°N hori-
zontally and within the upper 1000 m vertically.

3.    Identification of sensitive areas
Previous studies have investigated the impacts of CNOP-
based sensitive areas determined by different guidelines in
the atmosphere (Tan et al., 2010; Zhou and Zhang, 2014).
However, no such studies have been performed for oceanic
adaptive observations. In this study, we try to identify the
optimal sensitive area in adaptive observation for predicting
the seasonal reduction of UKT.
The vertically integrated energy scheme is employed to

identify sensitive areas. In this scheme, a sensitive area is
defined as the horizontal grids where the CNOP-type errors
have vertically integrated energy larger than a certain value ε.
In practice, ε can be adjusted to obtain sensitive areas of dif-
ferent sizes. The depth range chosen for integrating energy
is the upper 1000 m, where the CNOP-type errors are mainly
located. The identified sensitive area therefore can reflect the
general distribution of CNOP-type errors. This scheme has
been demonstrated to be effective for adaptive observations
of typhoons (Zhou and Zhang, 2014). Of further interest,
we will examine whether this scheme is effective for oceanic
adaptive observations.
To determine the sensitive area, two guidelines should be

decided: the specific energy scheme and the sensitive area
size. As described in subsection 2.2, the initial constraint is
defined as TE of initial errors, including kinetic energy (KE)
and potential energy (PE). To find the most effective energy
scheme, sensitive areas determined based on three energy
schemes (KE, PE and TE schemes) are investigated. The spa-
tial distributions of the vertically integrated KE, PE and TE
of CNOP are first compared (Figure 1). KE values are much
smaller than PE values; therefore, the spatial pattern of TE is
mainly determined by the distribution of PE. Moreover, the
grids with larger KE values are located more east compared
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Figure 1            Distributions of non-dimensional vertically integrated energy of CNOP in the upper 1000 m.

to the grids of larger PE or TE values. Consequently, the sen-
sitive areas determined based on the TE and PE (TE) energy
schemes differ considerably, and adaptive observations based
on these sensitive areas may affect UKT predictions quite dif-
ferently. In addition, adaptive observations within larger sen-
sitive areas generally bring greater improvements of forecast
skills. However, the costs and difficulties of conducting tar-
geted observations increase rapidly with enlarging sensitive
areas. Therefore, it is practical to assess how enlarging the
sensitive area will improve the forecast of interest. As noted
above, the sensitivity of the sensitive areas, which generally
refers to whether the ICs in the sensitive areas are sensitive to
UKT variation, is affected by both the specific energy scheme
and the sensitive area size.
To select the appropriate energy scheme and sensitive

area size, the following experiments are conducted. Totally
27 different sensitive areas are identified. These sensitive
areas are characterized by three energy schemes and nine
sensitive area sizes (linearly increasing from 0.1% to 0.9%
of the model domain), which are correspondingly denoted
as Sen_KE_1 to Sen_KE_9, Sen_PE_1 to Sen_PE_9 and
Sen_TE_1 to Sen_TE_9. To illustrate the distributions of
these sensitive areas, snapshots of selected examples are
provided in Figure 2. The sensitive areas determined using
the PE scheme (denoted as Sen_PEs) are similar to those
determined using the TE scheme (denoted as Sen_TEs),
whereas the sensitive areas determined using the KE scheme
(denoted as Sen_KEs) differ considerably. For instance,
Sen_KE_3 differs greatly from Sen_PE_3 and Sen_TE_3 in
that most of the former is located east of 129°E. However,
Sen_KEs become more similar to Sen_PEs or Sen_TEs as
the size of the sensitive area grows. As shown in the third
row of Figure 2, the sensitive areas determined by KE and PE
are quite similar. To quantitatively compare these sensitive
areas, Figure 3 demonstrates the percentages of grids shared
between Sen_KEs, Sen_PEs and Sen_TEs. The percentages
of shared grids between Sen_PEs and Sen_TEs all exceed
80.0%. In contrast, the percentages of grids shared between
Sen_KEs and both Sen_PEs and Sen_TEs are lower, espe-
cially with small sensitive areas. In particular, the percentage
of grids shared between Sen_PE_1 and Sen_KE_1 is zero,
which indicates that the two sensitive areas are completely

different. These percentages become larger as the sensitive
area size grows, and reach approximately 60% for the largest
sensitive area size.
Ideal hindcasting experiments are conducted to assess the

effectiveness of the identified sensitive areas. Here, “ideal”
means that the model is perfect without model error and that
all prediction errors are induced by uncertainty of ICs. There-
fore, ideal hindcasting experiments can be conducted to eval-
uate the effects of directly removing initial errors within the
sensitive areas, and are performed as follows. First, 27 initial
errors are generated by removing the CNOP-type errors in the
upper 1000 m of the identified sensitive areas. Subsequently,
each of these initial errors is superimposed onto the initial
reference state, and the nonlinear model is integrated for 64
days. The UKT changes at the prediction time caused by the
initial errors are used to denote the corresponding prediction
errors. The prediction benefits by removing the CNOP-type
errors in each sensitive area are estimated using the following
ratio:

k
T T

T
,iCNOP

CNOP

= (6)

where, TCNOP and Ti (i=1, 2, 3,…, 27) denote the absolute
UKT changes at the prediction time induced by superimpos-
ing CNOP and the generated initial errors, respectively.
Figure 4a demonstrates the prediction benefits of these ideal

hindcasting experiments. Removing the CNOP-type errors in
the identified sensitive areas all improve the prediction of the
seasonal reduction of UKT. In particular, when the sensitive
area sizes are small (i.e., less than 0.3%), prediction improve-
ments from removing the CNOP-type errors in Sen_KEs are
larger than those in Sen_PEs. Recalling that Sen_KEs differ a
lot with Sen_PEs in this circumstance, these findings suggest
that the sensitive areas determined by the KE scheme are ef-
fective even though vertically integrated KE values are much
smaller. Therefore, the kinetic components of initial errors
cannot be neglected. As the sensitive area size grows, the
prediction benefits from removing the CNOP-type errors in
Sen_PEs increase more rapidly and become larger than those
in Sen_KEs, which indicates that the potential components
of CNOP also cannot be ignored. Moreover, removing the
CNOP-type errors in Sen_TEs generally yields the best pre-
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Figure 2            Snapshots of selected sensitive areas determined by different energy schemes and sensitive area sizes; (a1)−(a3) denote the sensitive areas determined
using the KE scheme and horizontal sizes of 0.3%, 0.5% and 0.7% of the model domain, respectively. Similarly, (b1)−(b3) and (c1)−(c3) denote the sensitive
areas determined using the PE and TE schemes, respectively.

Figure 3            Percentages of grids shared by Sen_KEs, Sen_PEs and Sen_TEs
for different sensitive area sizes.

diction for all investigated sensitive area sizes. The reason
could be that the TE scheme accounts for the impacts of both
the kinetic and potential components of initial errors at the
same time. Therefore, the TE scheme is identified as the most
effective energy scheme for identification of sensitive areas.
Another issue to be resolved is choosing the appropri-

ate sensitive area size. As shown in Figure 4a, removing
CNOP-type errors in larger sensitive areas indeed leads to
higher prediction benefits. The largest sensitive area size is

the best if only the prediction skill improvement is consid-
ered. However, we must also consider the difficulties and
economic costs associated with deploying observations over
larger sensitive areas. Therefore, the optimal sensitive area
is one that results in considerable prediction improvement
with relatively high efficiency. To explore the efficiency of
different sensitive area sizes, prediction benefit increments
by enlarging Sen_TEs from 0.1% to 0.9% are investigated
(shown in Figure 4b). The prediction benefit increments
induced by increasing the Sen_TE size by 0.1% are much
larger when sensitive areas are smaller, and the opposite is
also true. For instance, enlarging the Sen_TE size by 0.1%
can induce acceptable benefit increments greater than 5%
when the size is smaller than 0.5%. For Sen_TEs larger
than 0.5%, the effects of enlarging Sen_TEs on prediction
skill improvement are limited. In this case, performing
ideal hindcasting experiments is less efficient. The reason
could be that the grids in the enlarged sensitive areas in this
circumstance are relatively less effective for improving UKT
prediction because we prefer to choose grids with greater
integrated energy for smaller sensitive areas. In fact, the
objective is to obtain considerable prediction improvements
with a relatively small sensitive area. After balancing the ef-
fectiveness and efficiency of different Sen_TEs, the sensitive
area size of 0.5% of the model domain is selected.
Ultimately, the TE scheme and the sensitive area size of

0.5% of the model domain are found to be most suitable. The
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Figure 4            (a) Prediction benefits of performing ideal hindcasting experi-
ments in identified sensitive areas, (b) prediction benefit increments of en-
larging Sen_TEs from 0.1% to 0.9%.

optimal sensitive area determined by the two guidelines is
denoted as OSen (i.e., Sen_TE_5, stippled in Figure 5). OSen
covers the large-amplitude region of the vertically integrated
TE of CNOP. The ideal hindcasting experiment performed in
OSen can improve UKT prediction by approximately 40%.

4.    Sensitivity experiments
In this section, we examine whether UKT forecasts are sen-
sitive to the initial errors in OSen. The following sensitivity
experiments are conducted to investigate the impacts of the
spatial patterns and locations of initial errors.

4.1    Impacts of spatial patterns of initial errors

First, the CNOP-OSen initial error and 30 groups of random
initial errors are generated. CNOP-OSen is produced by only
retaining the CNOP-type errors in the upper 1000 m of OSen.
For the 30 random initial errors, all variables are zero except
those located in the upper 1000 m of OSen, which are set to
random numbers. The random number at each grid is stochas-
tically selected from a matrix satisfying the normal distribu-
tion N(0, σ1), where σ1 is randomly chosen from 0 to 2. For

Figure 5            Domains of the compared areas (R1 to R6). The dotted region
denotes the identified sensitive area OSen.

fair comparison, all random initial errors have been scaled
to ensure that their total energy equals that of CNOP-OSen.
We then superimpose CNOP-OSen and the 30 random initial
errors on the initial reference state and integrate the nonlinear
model for 64 days, respectively.
The UKT changes caused by these errors at the prediction

time t are then investigated. The results indicate that super-
imposing CNOP-OSen leads to a UKT increase of 1.47×106
m3 s‒1. However, the UKT changes caused by the random
initial errors are much smaller (shown in Figure 6), and are
highly random; among the 30 groups of the random errors,
half lead to increased UKT, whereas the other half cause UKT
decrease. Some random errors cause prediction errors greater
than 20000 m3 s‒1, whereas some barely affect the UKT pre-
diction. Statistics of the absolute changes in UKT induced
by these random errors are listed in Table 1. The mean ab-
solute UKT change caused by all random errors is 7736 m3

s−1, which accounts for only 0.6% of the UKT change induced
by CNOP-OSen. The only difference between CNOP-OSen
and the random initial errors is whether these errors have the
CNOP-type spatial pattern. Therefore, it can be inferred that
the spatial patterns of initial errors play an important role in
error growth and that initial errors with CNOP or CNOP-like
patterns are more likely to cause large prediction errors.
To examine the relationships between the spatial patterns

of initial errors and the prediction errors they cause, correla-
tion coefficients between CNOP-OSen and these random ini-
tial errors have been calculated. As depicted in Figure 7a, the
random initial errors show different correlations with CNOP-
OSen, although all correlation coefficients are small. The ran-
dom initial errors with stronger correlations (whether positive
or negative) with CNOP-OSen tend to cause larger prediction
errors. These findings support the speculation that initial er-
rors with CNOP-like patterns are likely to cause poorer pre-
dictions. However, this possibly is not convincingly demon-
strated by these correlations because the correlation coeffi-
cients between CNOP-OSen and the random initial errors are
very small.

Zhang K, et al.   Sci China Earth Sci   May (2017)  Vol. 60  No. 5 871



Figure 6            The UKT changes at the prediction time caused by the random
initial errors in OSen. The red column denotes the mean of the absolute UKT
changes. The dashed lines denote UKT changes of 6000 and −6000 m3 s−1.

Table 1        Statistics of the absolute UKT changes caused by random initial
errors in OSen and the compared areas (R1 to R6)

Area
Number of

random errors
(m3 s−1)

Maximum
(m3 s−1)

Mean
(m3 s−1)

Median
(m3 s−1)

OSen 30 22483 7736 5046

R1 30 5594 2090 2196

R2 30 16247 4186 3279

R3 30 15416 4458 4285

R4 30 3742 1596 1473

R5 30 6094 2179 2092

R6 30 9882 3552 2851

Mean of all random initial errors
in R1‒R6 3010

To confirm this hypothesis, the following experiments are
performed. A total of 30 special-pattern initial errors are
generated, whose correlation coefficients with CNOP-OSen
range from −1.0 to 1.0. For each special-pattern error, all
variables are zero except for those in the upper 1000 m of
OSen, which are set to specific numbers. The specific num-
ber at a particular grid is generated as follows:

( ),CNOP ran= ± + (7)

where, η is the desired specific number and ηCNOP is the value
of the CNOP-type error; ηran is stochastically chosen from a
matrix satisfying normal distribution N µ( , )2 2 . For different
special-pattern errors, µ 2 and 2 are differently chosen to en-
sure that the correlation coefficients extend from −1.0 to 1.0.
For fair comparison, the special-pattern errors are also scaled
to have same total energy as CNOP-OSen. The impacts of
these errors on UKT prediction are also investigated. Fig-
ure 7b displays a scatter plot of the correlation coefficients
between CNOP-OSen with the special-pattern errors and the
induced UKT changes. The UKT changes caused by the spe-
cial-pattern initial errors are much larger than those caused

by the random initial errors. The mean absolute UKT change
induced by the special-pattern errors is about 70 times larger
than that induced by the random initial errors. Furthermore,
stronger correlations between the special-pattern errors and
CNOP-OSen correspond to greater prediction errors. These
findings not only reflect the important role of spatial patterns
in error growth, but also emphasize that the CNOP pattern
may be the most unstable error pattern.

4.2    Impacts of locations of initial errors

To explore the impacts of the locations of initial errors, six
areas (denoted as R1, R2, R3, R4, R5 and R6; see Figure 5)
with the same size as OSen are selected for comparison. All
compared areas are located in east or south of the target sec-
tion S, where initial errors have important impacts on UKT
variation (Rudnick et al., 2015). For each compared area, a
similar method to that described in subsection 4.1 to generate
random initial errors is used to generate 30 groups of random
initial errors. The random initial errors for each compared
area only occur in the upper 1000 m of R1‒R6 accordingly.
We then superimpose these random initial errors onto the ini-
tial reference state and investigate the UKT changes induced
by these errors at the prediction time.
Figure 8 demonstrates theUKT changes induced by the ran-

dom initial errors in each compared area. The prediction er-
rors caused by the random errors of all compared areas show
large uncertainties. Some random initial errors cause clear
UKT changes, whereas some barely affect UKT variation.
Some errors cause the UKT to increase, whereas others cause
it to decrease. Although the uncertainties exist, two findings
are notable. First, the absolute UKT changes caused by the
random errors in all compared areas are much smaller than
those caused by the random errors in OSen. Nearly half of
the random initial errors (15 groups) in OSen cause UKT to
change by more than 6000 m3 s‒1. However, the numbers of
initial errors that cause such large changes of UKT in R1–R6
are small, with a maximum of 7 (in R3) and a minimum of
zero (in R1 and R4). The red columns denoting the mean
absolute UKT changes in Figures 6 and 8 reflect this finding
more directly. Secondly, the UKT changes caused by the ran-
dom initial errors in R2 and R3 are comparatively larger. The
mean absolute UKT changes in R2 and R3 are about twice as
large as those in R1, R4 and R5.
Further statistics of the absolute UKT changes caused by

the random initial errors in OSen and R1‒R6 are listed in Ta-
ble 1. All values related to the absolute UKT changes (includ-
ing maxima, means and medians) in OSen are much larger
than those in any region from R1 to R6. The mean absolute
UKT change induced by the random initial errors in all com-
pared areas is 3010 m3 s‒1, which is 38% of that caused by the
random initial errors in OSen. For the mean absolute UKT
changes caused by the random errors in the compared areas,
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Figure 7            Scatter diagrams of UKT changes and the correlation coefficients between CNOP-OSen and initial errors in OSen: (a) for random initial errors and
(b) for special-pattern initial errors. The green line is the regression line.

Figure 8            The UKT changes (unit: m3 s‒1) at the prediction time caused by the random initial errors in each compared areas (R1 to R6). The red column
denotes the mean of the absolute UKT changes. The dashed lines denote UKT changes of 6000 and −6000 m3 s‒1.

the largest (4458 m3 s‒1) and smallest (1596 m3 s‒1) occur in
R3 and R4, accounting for about 57% and 21% of that in
OSen (7736 m3 s‒1). In addition, the statistical data for R2
and R3 are indeed greater. The reason for this difference is
that R2 and R3 share more grids with OSen than R1, R4 and
R5 (as shown in Figure 5). In fact, calculations indicate that
OSen primarily overlaps with R2 and R3, with common grid
percentages of 49.8% and 36.9%, respectively.
Because all random initial errors in OSen and the com-

pared areas are randomly generated, the reason for such dif-
ferent results is inferred to be the locations of the initial errors.
Considering that the random errors in OSen generally lead to
poorer predictions, OSen is interpreted to be more sensitive
to the growth of initial errors. Moreover, the fact that initial
errors in areas that share more grids with OSen lead to larger
prediction errors also emphasizes the sensitivity of the loca-
tion of OSen.

5.    Discussion and summary

With the ROMS model, UKT variations, especially the
seasonal reduction, were successfully simulated. Using
the CNOP approach, the optimal sensitive area in adaptive
observation for predicting a typical transport reduction event
was identified. We employed the vertically integrated energy
scheme to identify CNOP-based sensitive areas, mainly
considering two factors: the specific energy scheme and the
sensitive area size. Totally 27 sensitive areas characterized
by three energy schemes (KE, PE and TE schemes) and nine
sensitive area sizes (linearly increasing from 0.1% to 0.9%
of the model domain) were investigated. We performed ideal
hindcasting experiments to evaluate the effectiveness of
these sensitive areas. The results show that neither the kinetic
nor the potential components of CNOP can be neglected. In
detail, Sen_KEs are more effective than Sen_PEs for smaller
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sensitive areas, and the opposite is true for larger sensitive
areas. Moreover, correcting ICs in Sen_TEs tends to yield
the greatest benefits. The cause of the sensitivity difference
between Sen_KEs and Sen_PEs remains unclear, and thus
requires further investigation. The TE scheme was ultimately
adopted because it accounts for both the kinetic and potential
components. In addition, larger sensitive areas indeed lead
to better predictions, but require more observations. After
balancing the prediction improvement and loss of efficiency
associated with enlarging the sensitive area, the horizontal
size of 0.5% of the model domain was selected. Thus, the
optimal sensitive area OSen was identified.
Subsequently, sensitivity experiments on OSen were con-

ducted to explore the impacts of the spatial patterns and loca-
tions of initial errors. The results show that the initial errors in
OSen with CNOP or CNOP-like patterns tend to cause larger
prediction errors. Generally, the stronger the correlation be-
tween the initial error and CNOP, the worse the resulting pre-
diction is. Therefore, the CNOP pattern could be the most
unstable pattern. In addition, initial errors within OSen are
more likely to result in poorer predictions than those in other
regions. Meanwhile, the prediction errors caused by initial er-
rors in the areas that share more grids with OSen are generally
larger. Therefore, reduction of initial errors in the CNOP-de-
termined sensitive area or nearby areas could be more effec-
tive for improving the prediction of the seasonal reduction of
UKT.
Previous studies have suggested that the westward-propa-

gating eddies can affect UKT variation (Hu et al., 2013; Lien
et al., 2014). In fact, the identified OSen is located in the
eddy-energetic region formed by the North Pacific Subtrop-
ical Countercurrent and the NEC (Qiu, 1999). Oceanic in-
stabilities in this region, mainly baroclinic instability, could
cause rapid growth of initial errors and thus result in poor pre-
dictions of UKT variation (Qiu, 1999; Chang and Oey, 2014;
Zhang et al., 2016). Therefore, conducting additional obser-
vations in OSen is expected to be effective for improving the
prediction of UKT variation. In addition to the uncertainty
of ICs, external forcing, such as wind forcing, also affects
the prediction of UKT. Previous studies have shown that the
NMK current system is driven by large-scale wind forcing
(e.g., Qiu and Lukas, 1996; Qu and Lukas, 2003; Chen and
Wu, 2011; Hu and Duan, 2016). Wind forcing can affect the
latitude of NEC bifurcation, which could further affect UKT
variation by modulating the volume distribution between the
tropical gyre and the subtropical gyre. Therefore, the impacts
of wind forcing on UKT prediction are worth exploring next.
This study is the first attempt to discuss the guidelines for

identifying the CNOP-based sensitive area in a 3-D opera-
tional ocean model. This work is preliminary; only the pre-
diction benefits of removing CNOP errors in sensitive areas
for a single transport reduction event were examined. There-
fore, additional case studies and realistic observation sys-

tem simulation experiments (OSSEs) will be conducted in
the future, with appropriate observation platform designs and
data assimilation systems taken into consideration at the same
time. Based on this preliminary work, we plan to design the
observation network for predicting the seasonal reduction of
UKT in the future. We expect that real-time targeted obser-
vations will benefit from these results.
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