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Abstract Tropical cyclones (TCs) are among the most destructive natural hazards on Earth. The ocean
can have dramatic responses to TCs and further imposes significant feedbacks to the atmosphere. A com-
prehensive understanding of the ocean-TC interaction is a challenging hindrance for improving the simula-
tion and prediction of TCs and therefore avoidance of human and economic losses. A special section of JGR-
Oceans was thus organized, in order to have a broad summary of latest progress in ocean-TC interactions.
This introduction presents a brief overview of the contributions found in this collection. We hope it can also
shed light on recent advance and future challenges in the studies on the oceanic responses and feedbacks
to TCs.

Tropical cyclones (TCs) are one of the most extreme weather events, which cause tremendous disasters to
nations across the globe including the heavily populated coastlines of Asia and North America. Improving
the understanding, simulation, and forecast of TCs is a scientific and social imperative. It is well known that
the upper ocean exhibits pronounced responses to TCs. However, many of the detailed processes and phys-
ical mechanisms governing such responses remain a mystery. In addition, the ocean has complicated feed-
backs to TCs, which can leave clear fingerprints on the intensity, track, and the long-term variability of TCs.
Therefore, a special collection in the Journal of Geophysical Research: Oceans on Oceanic Responses and
Feedbacks to TCs was organized in 2016 and 2017. The special collection received more than 70 submis-
sions and about 30 papers have been published so far. Papers included in this international special collec-
tion cover a broad topic of the ocean-TC interactions, such as, but not limited to, the physical mechanism
for ocean-TC interactions, ocean-TC interactions in the context of climate change, the data assimilation
techniques and TC prediction using coupled models, and other related interdisciplinary studies such as
coastal environments (Seroka et al., 2017; Shen et al., 2017), biochemical (Xu et al., 2017; Zhao et al., 2017),
and geological (Lin et al., 2018) processes associated with TCs. This introduction is not a comprehensive
review of recent progress in ocean-TC interaction, but a brief introduction to some highlights in this
special section.

Observations, especially those synchronized across the ocean and atmosphere, are still the major challenge
for making breakthroughs on ocean-TC interactions due to the prohibitively harsh working environment asso-
ciated with TCs. Data are gradually accumulated from isolated stations and individual TC events, such as the
ones reported in Duan et al. (2017), Lee et al. (2017), and Blair et al. (2018) in this collection. Remote sensing
has been a routine method to monitor TCs and oceanic variabilities, but technological limitations inhibit some
satellite sensors from fully observing the ocean and atmosphere in TC conditions (heavy clouds and rainfall,
high wind speeds, etc.). New techniques and algorithms are continuously proposed to improve the retrieval of
TC properties from Earth orbiting satellites; for example, Shao et al. (2017) improved estimation of TC wind
speeds by exploiting wind-generated waves extracted from spaceborne synthetic aperture radar (SAR). Inten-
sive and well-organized projects are usually an auspice of significant progress in the ocean-TC studies, such as
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the Coupled Boundary Layer Air-Sea Transfer (CBLAST) experiment (Black et al, 2007) and the Impact of
Typhoons on the Ocean in the Pacific (ITOP) project (Collins et al, 2018; D'Asaro et al,, 2014; Potter et al.,
2017). Recently, in order to collect a chronic and three-dimensional perspective on changes to the water col-
umn during TCs, a series of mooring/buoy arrays are deployed in the northern South China Sea (Zhang et al,,
2016a) where historical statistics show that typhoon has the highest occurrence probability. A novel approach
using rocket-deployed dropsondes is designed and tested to obtain vertical profiles in the atmosphere within
a TC (Lei et al,, 2017). Comparing with the aircraft platform, a rocket can fly higher (up to 15 km above the sea
surface) and faster (traversing a TC in about 6 min), so that the vertical profiles are more complete and more
simultaneous. Synthesizing the rocket-based observations and traditional mooring/buoy arrays in the ocean,
it is expected to build up an observing system which can capture coherent variations across the ocean and
atmosphere during TCs. Other adaptive technologies such as the Iridium Argos and glider arrays have already
made the TC chase more flexible and agile over the ocean.

The ocean has complex responses to the passage of a TC. Near-inertial waves are a well-known conse-
quence in the ocean due to TC forcing. However, since mesoscale eddies account for almost 90% kinetic
energy in the upper ocean (Ferrari & Wunsch, 2009), the responses and feedbacks of oceanic eddies to TCs
become the focus of the local ocean-TC interactions, which can be clearly seen from the papers in this col-
lection. Although eddies apparently have a large variance in all properties, a universal structure can be
established for the cyclonic and anticyclonic eddies separately, by normalizing the eddy properties against
the background environment (Sun et al., 2017; Zhang et al.,, 2014). Cyclonic and anticyclonic ocean eddies
have different behaviors during TCs. Usually, anticyclonic eddies carry warm sea surface temperature (SST)
anomalies and are favorable for the rapid intensification of TCs (Mawren & Reason, 2017). In addition to the
surface heat flux, the horizontal convergence/divergence induced by eddies are also large enough to mod-
ify the temperature and salinity anomalies induced by TCs (Liu et al., 2017), which indicates that a three-
dimensional ocean structure and horizontal advection are inevitable to have a comprehensive understand-
ing of the oceanic responses to TCs. Below the upper ocean mixed layer, cold water rises due to the Ekman
pumping (Zhang et al., 2016a) and a secondary cooling center is found in both the cyclonic and anticyclonic
eddies but at different depths. As a result, the stability of the upper ocean is modified and the ocean mixing
can be significantly increased, which ultimately have feedbacks to TCs.

In addition to the local responses and feedbacks, the ocean also interacts with TCs at much larger and lon-
ger spatiotemporal scales. Strong disturbance during TCs is an efficient way to deluge the ocean interior
with heat and kinetic energy. The energy input heavily depends on the oceanic and atmospheric environ-
ment (such as the barrier layer in the upper ocean and the moving speed of a TC; Yan et al,, 2017) and the
climate states (such as El Nino and La Nina; Huang et al., 2017). The TC-originated energy spreads over the
ocean along with the general circulation, and subsequently modifies its vertical stratification and dynamics
(Zhang et al,, 2017b). On the other hand, the long-term statistical properties of TCs are subject to the upper
ocean heat content (Fedorov et al., 2010; Sriver & Huber, 2007). The depth of 26°C isotherm is a commonly
used proxy of the upper ocean heat content, as shown with the Ocean Observing System Simulation Experi-
ments (Halliwell et al.,, 2017). A new genesis potential index (GPI) for TCs is established by explicitly involv-
ing the depth of 26°C isotherm, which represents the variance in the ocean interior (Zhang et al.,, 2016b).
The new GPI provides a quantitative tool for the evaluation of the oceanic feedback to TCs at a low
frequency.

Finally, the improvement of TC simulation in fully coupled Earth system models is a major challenge. Due to
the close relations between the oceanic eddies and TCs, an eddy-resolving ocean model is necessary for fur-
ther improvement of TC simulation. In this collection, Zhao and Chan (2018) evaluated the influences of
oceanic eddies on the simulated TC intensity by comparing coupled and uncoupled models. Li and Sriver
(2016) examined global ocean responses to TCs with different model resolutions and found that TCs can
significantly contribute to global ocean heat and energy budgets. Similarly, Mogensen et al. (2017) tested
the ocean simulations during TCs using a coupled European Centre for Medium-Range Weather Forecasts
(ECMWF) model with different resolutions. They confirmed that the upper ocean stratification is critical for
the oceanic feedbacks to TCs. Specifically, a strong (weak) coupled feedback is found when the ocean heat
content of the upper layer is low (high). In addition to the high-resolution which can resolve eddies, some
other small-scale processes also play important roles for the ocean-TC interactions, such as the sea surface
waves and sea spray (Zhang et al., 2017a). Therefore, designing and adopting appropriate parameterizations
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for the subgrid processes, which have smaller scales than the state-of-the-art eddy-resolving models can
capture, are critical for a vivid simulation of oceanic responses to TCs. For example, Aijaz et al. (2017) consid-
ered the turbulence generated by nonbreaking waves by adopting a new parameterization in an ocean-
atmosphere-wave-coupled model and Blair et al. (2018) examined the influences of the state-dependent
Langmuir turbulence by modifying the classical K-Profile parameterization scheme. Along with the improve-
ment in TC simulation, TC forecast has also achieved much progress by using coupled models and
advanced data assimilation technics (Wada & Kunii, 2017). For instance, in this collection, a three-
dimensional adjoint targeting approach was applied to examine the impact of ocean observations on TC
forecast errors in a coupled prediction system (Chen et al., 2017) and the results emphasized the necessity
of targeted observations and ocean eddies for TC prediction.

In summary, ocean-TC interactions are of both scientific and socioeconomic importance, and the depth of
this special section is a testament to the energy of the international scientific community addressing the
challenge. Although much progress has been made, some key challenges still remain for understanding
fundamental mechanisms, simulation and data assimilation technologies, and operational forecast systems.
Papers in this special section provide an outline of the contemporary advance in ocean-TC interactions, and
meanwhile raise many serious issues requiring more investigations in the future. Studies in this collection
emphasize the necessities of both the fully coupled climate models with a high enough ocean resolution
and better parameterizations for unresolved processes. Along with the fast increasing power of super com-
puters (and probably cloud computing as well), until now, resolutions have become high enough to permit
TCs in an atmosphere model (Zhao & Held, 2012) and to resolve mesoscale eddies in an ocean model. An
eddy-resolving ocean model should be preferred if the computing resources allow. In addition, many pro-
cesses (such as the ocean waves, mixing, and sea spray), which are critical for the oceanic feedbacks to TCs,
are too small to be resolved given current computing ability. Thus, better parameterizations for such sub-
grid (even smaller than the eddy-resolving scale) processes are highly required based on delicate observa-
tions and careful analyses. With the continuous boost in computing power, it is for sure that model
(including the atmosphere, ocean, wave components, and maybe others) resolutions will become higher
and more processes will be directly resolved in the future. Nevertheless, since the ocean and TCs have
inseparable interactions over very wide spatiotemporal scales, it is also very likely that the effects of more
fine-scale processes (for example, the ones related to the air-sea fluxes and probably something that has
not been well known to people so far) will be unveiled as a result of the in-depth process studies. Therefore,
it is hardly doubtful that progress on parameterization will be still necessary for a long time. Hence, we
believe a coupled model with high resolutions and advanced parameterizations should be a desired test
bed for promoting the studies on ocean-TC interactions.
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