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Abstract
Background and aims Soil plays a key role in land-
atmosphere carbon exchange as the largest carbon pool
in terrestrial ecosystems. Because of the uncertainty in
predictions of soil carbon storage, understanding the
magnitude and spatial and temporal patterns of terrestri-
al carbon sinks and sources is difficult.
Methods In this study, the response of soil carbon to
future climate change scenarios, which were provided
by 10 general circulation models (GCMs) of the
Coupled Model Intercomparison Project 5 (CMIP5)
under the Representative Concentration Pathway
(RCP) 4.5 scenario, was explored with the Lund-
Potsdam-Jena (LPJ) model for a North-South Transect
of Eastern China (NSTEC). Additionally, the condition-
al nonlinear optimal perturbation related to parameters
(CNOP-P) approach was used to provide two scenarios

to evaluate the possible maximal uncertainties of soil
carbon response to future climate change.
Results Based on the 10 GCMs from 2011 to 2100, the
mean soil carbon was from 75.6 Gt C to 86.7 Gt C. As a
result of the two climate change scenarios using the
CNOP-P approach, soil carbon stocks were respectively
93.1 Gt C and 84.1 Gt C, which were larger than those
using the 10 GCMs. The primary difference was deter-
mined by the difference in middle and high latitudes
(30o N-35o N; 40o N-45o N) of the NSTEC region
according to zonal analysis. Soil carbon associated with
different plant functional types was also analyzed. The
primary contributors to the augmentation of soil carbon
under the CNOP-P-type scenario were the increases in
soil carbon for temperate broad-leaved summer-green
trees and temperate grasslands.
Conclusions As these numerical results indicated, un-
certainty was found in the predictions of soil carbon, and
the future soil carbon will increase in NSTEC region
compared to 1961–1990. This implied that the soil may
play role of carbon sink. And, the CNOP-P approach
might offer a possible future upper limit for the evalua-
tion of soil carbon with the LPJ model.

Keywords CNOP-P. Soil carbon . CMIP5 . Climate
change . Seasonal and regional heterogeneity

Introduction

Soil is the largest pool of carbon in terrestrial ecosys-
tems (Jobbágy and Jackson 2000; Wieder et al. 2014),
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with estimates that the size of the soil organic carbon
pool is approximately two- to threefold larger than that
of atmospheric carbon. As the measure of balance be-
tween input from plant production and output of decom-
position, soil carbon has a key role in regulation of the
global carbon cycle and in climate-change policy and
carbon management (Piao et al. 2009; Sun et al. 2010;
Tan et al. 2010; Tian et al. 2015; Walker et al. 2015).
Therefore, accurate estimates or predictions of the var-
iation in soil carbon are required to determine whether a
soil is a source or a sink for carbon (Ni 2013).

In addition to model structure and parameterization
and land use, among other factors, climate change, mea-
sured as changes in temperature and precipitation, is one
of the primary factors that leads to variation in soil carbon
(Bonan et al. 2003; Jain and Yang 2005; Davidson and
Janssens 2006; Peng et al. 2009; Álvaro-Fuentes and
Paustian 2011; Heyder et al. 2011; Tian et al. 2015).
However, the uncertainties in model forcing fields trigger
uncertainty in continental to global-scale modeling of soil
carbon. Previous studies discuss the effects of climate
change on the uncertainty and the variation in soil carbon.
Bachelet et al. (2003) predicted that the difference in soil
carbon was approximately 10 Pg C with the MC1 dy-
namic vegetation model under driving data from
HADCM2SUL and CGCM1 and approximately 6 Pg C
with the Lund-Potsdam-Jena (LPJ) model for the identi-
cal driving data in the United States. Tan et al. (2010)
identified a net decrease in soil carbon stocks of Qinghai-
Tibetan Plateau grasslands using Organizing Carbon and
Hydrology in Dynamic Ecosystems (ORCHIDEE) under
a 2 °C warmer climate. However, the range in global soil
carbon estimates from modeling studies also indicates
large uncertainty (Arora and Matthews 2009). For exam-
ple, for different scenarios of climatology and climate
variability, the range of uncertainty for soil carbon esti-
mates was from 7.71 to 9.97 kg-C/m2 for the entire
Amazonian region (Botta and Foley 2002).
Additionally, the uncertainty of estimated soil carbon
was more than 50 Pg C using the Canadian Terrestrial
Ecosystem Model (CTEM) using the three IPCC Special
Reports on Emissions Scenarios (SRES): A2, A1B and
B1 (Arora and Matthews 2009). These studies indicate
the difficulties in the modeling of soil carbon to estimate
and predict the soil pool under different climate change
scenarios. However, estimating the degree of uncertainty
for the soil carbon pool is essential. Although the extent
of uncertainty of modeled soil carbon was determined in
previous studies, the maximal uncertainty remains

unknown under reasonable climate change scenarios.
An underestimation of the variation in soil carbon may
cloud understanding of the global carbon cycle, particu-
larly for whether soils are a carbon source or sink with
future changes in the environment (Ni 2013).

A helpful tool to estimate the maximal uncertainties of
simulation and prediction is the conditional nonlinear
optimal perturbation (CNOP) approach (Mu et al.
2003). The CNOP can cause the maximal errors of
simulation and prediction under a certain constraint
condition, which is the natural development of the
linear, singular vector for the initial error. Mu et al.
(2010) extended the CNOP approach related to the initial
error to the parameter error: the CNOP related to the
initial error is the CNOP-I, and the CNOP related to the
parameter error is the CNOP-P. The CNOP approach is
widely applied to examine the uncertainties and the pre-
dictability of the atmosphere, ocean, and land processes,
including the predictability of ENSO, typhoons, the
Kuroshio large meander (KLM) state, and grassland eco-
system (Duan and Zhang 2010; Qin and Mu 2011; Sun
andMu 2011, 2014;Wang et al. 2012; Zheng et al. 2012),
and terrestrial ecosystems.Moreover, Sun andMu (2013)
employed the CNOP-P approach to evaluate the varia-
tions in soil carbon in response to increases of 2 °C in
temperature and 20% in precipitation with changes in the
variability of temperature and precipitation. In their stud-
ies, these authors attempted to determine the maximal
uncertainty of the models of soil carbon. However, that
climate change scenario was restricted to only the in-
crease in temperature and precipitation by 2 °C and
20 %, respectively, which may be statistical results from
the general circulation models (GCMs). The extent of the
variation in temperature and precipitation in future pro-
jections from the GCMs is not consistent. Under the
climate change scenarios provided by the GCMs, the
maximal uncertainty of soil carbon in China remains
unknown. Therefore, in this study, the maximal uncer-
tainty of estimates of the terrestrial soil carbon pool on the
NSTEC was explored based on multiple driving data sets
from multiple GCMs.

Study region, model, and methods

Study region

The study region was larger than and did not completely
match the area of the North-South Transect of Eastern
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China (NSTEC), which extends from Hainan Island to
the northern border of China, ranging from longitude
108° to 118° E at latitudes less than 40° N and from
longitude 118° to 128° E at latitudes equal to or greater
than 40° N (Li et al. 2004; Sheng et al. 2011; Lu
et al. 2013; Zhan et al. 2014). For this region,
most plant functional types (PFTs) are modeled
with the Lund-Potsdam-Jena (LPJ) model, and
many carbon budgets are developed, such as those
for net primary production and soil carbon. The
climate condition in the region is exceptional be-
cause of the influence of the East Asian monsoon. Thus,
the response of soil carbon to future climate change
must be explored to understand the regulation of the
carbon cycle and to determine whether soils will be
carbon sinks or sources in China.

LPJ model

In this study, we used the original LPJ model (BLPJ
version 1^), which is designed based on the BIOME
family of biogeographical equilibrium models (Prentice
et al. 1992). The current LPJ model describes the dy-
namics of land carbon processes and the hydrological
cycle (Sitch et al. 2003). The model includes ten plant
functional types (PFTs) used to distinguish different
photosynthetic (C3 vs. C4), phenological (deciduous
vs. evergreen), and physiognomic (tree vs. grass) fea-
tures. Total soil carbon was in the belowground litter
pool and two soil carbon pools (fast and slow decom-
position carbon pools) for each grid cell. The LPJ model
is widely used to examine the variation in soil carbon
(Cramer et al. 2001; Bondeau et al. 2007; Heyder et al.
2011). For example, according to Bachelet et al. (2003),
the simulations and predictions of soil carbon using the
LPJ model are similar to those using other model, such
as the MC1 model in the United States. Poulter et al.
(2010) noted that the simulated soil carbon was reason-
able and was within the range of estimates from previ-
ous studies and that the differences in soil carbon esti-
mates were due to analyses with and without land
use. Additionally, these authors estimated future
variations in soil carbon using the LPJ model for
the entire Amazon Basin. In Sun (2009), the sim-
ulated soil carbon in China was similar to that of
other studies. These studies indicate that the LPJ
model can be used to examine the response of soil
carbon to climate change.

Climate data

The indispensable driving data sets to run the LPJ model
were monthly precipitation, temperature, wet day fre-
quency, and cloud cover. To evaluate the uncertainty of
future soil carbon estimates, climate projections from 10
general circulation models (GCMs) of the Coupled
Model Intercomparison Project 5 (CMIP5) from the
Representative Concentration Pathway (RCP) 4.5 sce-
nario were used as forcing data for LPJ during 2011–
2100 (Table 1, IPCC 2013). The data were spatially
interpolated to a 0.5o resolution and bias-corrected
(based on 1961–1990 bias) with CRU TS2.1 climate
data set (Mitchell and Jones 2005). Additionally, a data
set of atmospheric CO2 concentrations from RCP4.5
during 2011–2100 was also essential (IPCC 2013). Soil
texture data were based on the Food and Agriculture
Organization (FAO) soil data set (Zobler 1986).

Conditional nonlinear optimal perturbation related
to parameter (CNOP-P) approach

In this study, we used the CNOP-P approach to determine
themaximal possible uncertainty of soil carbon projections
for the NSTEC within the range of reasonable climate
change evaluated by the 10 GCMs. First, the CNOP-P is
introduced, which is a type of parameter perturbation that
causes the maximal uncertainty of a simulation or predic-
tion with a certain constraint and at an optimal time. In the
numerical models, in addition to the physical parameters
representing physical processes, temperature and precipi-
tation were also regarded as forcing parameters. In this
study, CNOP-P represented temperature and precipitation
perturbations, which led to the maximal uncertainty of a
simulation or prediction (Sun and Mu 2012, 2014). We
review the derivation of the CNOP-P approach for the
convenience of the readers as follows.

Let the nonlinear differential equations be as follow:

∂U
∂t

¼ F U ;Pð ÞU∈Rn; t∈ 0; T½ �
U t¼0 ¼ U0j

(
ð1Þ

where F is a nonlinear operator and P is a forcing vector
(including temperature, precipitation, wet day frequen-
cy, and cloud cover in the LPJ model) in Eq. (1), andU0

is an initial value. Let Mτ be the propagator of the
nonlinear differential equations from the initial time 0
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to τ. uτ is a solution of the nonlinear equations at time τ
and satisfies u(τ) =Mτ(u0, P).

Let U(T;U0, P) and U(T;U0,P) + u(T;U0,P) be the
solutions of the nonlinear differential equations (1) with
P andP+p, respectively, whereP andP are forcing vectors.
u(T;U0, p) describes the departure from the reference state
u(T;U0, p) caused by P The solutions satisfy:

U T ;U 0;Pð Þ ¼ MT U 0;Pð Þ
U T ;U 0;Pð Þ þ u T ;U0; pð Þ ¼ MT U 0;P þ pð Þ

�

For a proper norm ∥∥, a parameter perturbation Pδ is
a CNOP-P if and only if

J Pδð Þ ¼ max
p∈Ω

J pð Þ; ð2Þ

Where

J pð Þ ¼ MT U 0;P þ pð Þ−MT

�
U 0;P

���� k ð3Þ

and P is a reference state of the parameters in Eq. (1),
and P is the perturbation of the reference state. p ∈Ω is a
constraint condition.

Experimental design

The LPJ model is run over 1000 years, repeating years
1901–1930 of the CRU TS2.1 climate data set, followed
by transient runs for all available climate trajectories for
1901–2000. The predicted ecosystem state was the new
initial condition used to run the 10 GCMs for 2011–
2100 under RCP4.5 scenario. The same initial condition
was also applied to run the LPJ model for 2011–2100
for the CNOP-P-type climate change under RCP4.5

scenario. Grid cells with vegetation cover below 10 %
were considered deserts (Heyder et al. 2011).

To investigate the maximal uncertainty of a simulation
or prediction caused by forcing data, the CNOP-P ap-
proach was used to provide two new climate change
scenarios based on the 10 GCMs. As described in the
introduction to the CNOP-P approach, the reference state
and the constraint condition are two factors that must first
be determined. To demonstrate the uncertainty of future
soil carbon projections for the NSTEC, the forcing data
sets were used from the 10GCMs under emission scenario
RCP4.5. Therefore, the reference state and the constraint
condition were determined according to these forcing data
sets. Concretely, the ensemble average of the forcing data
sets from the 10 GCMs was the reference state. The
constraint condition was obtained from the minimum and
the maximum of the 10 differences between each GCM
and their ensemble average. The CNOP-P that was com-
puted based on the ensemble average of the forcing data
sets that originated from the 10 GCMs and the constraint
condition was a CNOP-P-M-type climate perturbation. In
addition to the CNOP-P-M-type, a CNOP-P-V-type cli-
mate change scenario was obtained based on the ensemble
average of the forcing data sets originated from the 10
GCMs and another constraint condition, which was ob-
tained from the variance of the 10 differences between
each GCM and their ensemble average. The CNOP-P-M-
type and the CNOP-P-V-type climate change scenarios
were clearly temporal and spatial characters and within
the range of 10 GCMs. In addition to these modeling
studies, the contribution of CO2 enrichment was modeled
in which the CO2 concentration was maintained as a
constant at the level in 2011 during 2011–2100 and the
climate scenario was maintained as the CNOP-P-V-type.

Table 1 Ten GCMs from CMIP5
Model Name Model ID Country of origin Resolution (Lat. × Long.)

ACCESS1–0 M01 Australia 1.875o × 1.25o

CCSM4 M02 USA 1.25o × 0.9o

CNRM-CM5 M03 France ~1.4o × 1.4o

Fgoals-s2 M04 China ~2.81o × 1.66o

HadGEM2-AO M05 Korea 1.875o × 1.25o

HadGEM2-CC M06 United Kingdom 1.875o × 1.25o

IPSL-CM5A-MR M07 France 2.5o × 1.25o

MIROC5 M08 Japan ~1.4o × 1.4o

MPI-ESM-LR M09 Germany 1.875o × 1.875o

MRI-CGCM3 M10 Japan 1.125o × 1.125o
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CNOP-P-M-type constraint condition was calculated
by the following equation.

min
i; j

Pijk−Pij

n o
k¼1;10

≤pij≤ max
i; j

Pijk−Pij

n o
k¼1;10

ð4Þ

where pij is the temperature and precipitation perturba-
tion series. Pijk is the temperature or precipitation series
for different models. i, j, and k are the year from 2011 to

2100, month from 1 to 12, and model. Pij is the ensem-
ble average of the forcing data (temperature and precip-
itation) sets of the 10GCMs. CNOP-P-V-type constraint
condition is calculated by the following equation:

pij
�� ��≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10

X10
k¼1

Pijk−Pij

� �2
vuut ð5Þ

Results and analyses

The effects of climate change from the 10 GCM and the
two CNOP-P-type climate change scenarios on soil
carbon projections for the NSTEC are investigated and
compared in this section. To analyze the physical pro-
cesses that might explain changes in soil carbon, the
belowground litter and the fast and slow soil carbon
pools by grid cell are also explored.

Effects of different future climate change scenarios
on soil carbon

The spatial character of soil carbon for 2011–2100 is
shown in Fig. 1, with the amounts of soil carbon showing
a consistent pattern for the different scenarios. For all
climate change scenarios, soil carbon amounts were high
at high latitudes and low at low latitudes. However, the
estimated amounts of soil carbon for the NSTEC for all
climate change scenarios were different. The total soil
carbon projected for the NSTEC ranged from 75.6 Gt C
(MIROC5 model) to 86.7 Gt C (FGOALS-g2 model) for
all climate change scenarios that originated from the output
of 10 GCMs. The total soil carbon for the NSTEC was
estimated as 93.1 Gt C for the CNOP-P-M-type climate
change scenario and 84.1 Gt C for the CNOP-P-V-type
climate change scenario (Table 2), which were amounts
higher than the 62.0 Gt C from 1961 to 1990 for the
NSTEC using the LPJ model. The largest accumulation
of soil carbon was under the CNOP-P-M-type climate

change scenario compared with the other climate change
scenarios, including that of the CNOP-P-V-type. These
different features were clear for the zonal mean of soil
carbon in medium and high latitudes, i.e., from 30o to 35o

N and from 40o to 45o N, respectively (Fig. 2).
The interannual variations of total soil carbon projected

for the NSTEC for all climate change scenarios were also
evaluated, as shown in Fig. 3. From the above modeling
results, soil carbon stocks increased in 2011–2100 com-
pared with those for 1961–1990. However, interannual
variations in the soil carbon estimates were different during
2011–2100 for all climate change scenarios. The climate
change scenarios estimated by five of the models (i.e., bcc-
csm1–1, CCSM4, CNRM-CM5, FGOALS-g2 and
CNOP-P-M-type) suggested that the growth of soil carbon
stocks was consistent during the study period (Table 3).
For example, the soil carbon stock was 80.5, 87.4, 87.9,
and 88.7Gt C in 2011, 2030, 2060, and 2090, respectively,
for FGOALS-g2. For the climate change scenarios esti-
mated by the other five models (i.e., HadGEM2-AO,
HadGEM2-CC, MPI-ESM-LR, MRI-CGCM3 and
CNOP-P-V-type), soil carbon stocks increased toward the
middle of the study period and decreased toward the end.
For example, the soil carbon stock was 80.1, 84.5, 80.0,
and 75.8Gt C in 2011, 2030, 2060, and 2090, respectively,
for HadGEM2-AO.Moreover, two climate change scenar-
ios (IPSL-CM5A-MRandMIROC5) indicated soil carbon
stocks decreased during the entire study period. For exam-
ple, for MIROC5, the soil carbon stock was 79.9, 78.8,
73.4, and 69.5 Gt C in 2011, 2030, 2060, and 2090,
respectively. According to these modeling results, the esti-
mated total soil carbon for the NSTEC increased persis-
tently for most climate change scenarios during 2011–
2040. The total soil carbon estimates for the NSTEC were
maintained for most climate change scenarios in the final
50 years of the study period and decreased under only four
climate change scenarios during this final period.

Effects of different future climate change scenarios
on belowground litter and fast and slow soil carbon
pools

To explore the variations in soil carbon estimates, three
primary components of the soil carbon stock, below-
ground litter and fast and slow soil carbon pools, were
examined for all climate change scenarios, with the
spatial distributions shown in Figs. 4, 5 and 6. The
primary factor affecting the variation of the soil carbon
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stock was the variation in the fast soil carbon pool (Fig. 4).
As shown in Fig. 4, the change in the fast soil carbon pool
under the CNOP-P-M-type climate change scenario was
higher than that under those estimated by the 10 GCMs
and CNOP-P-V-type. The variations in the belowground
litter and slow soil carbon pools had little effect on the
variation of the soil carbon stock (Figs. 5 and 6). The
belowground litter and slow soil carbon pools were similar
for all climate change scenarios, and the mean of the three
important components also showed this response. The
amount of the fast soil carbon pool under the CNOP-P-
M-type climate change scenario was 61.2 Gt C, whereas
the amounts of this pool under the CNOP-P-V-type and 10
GCM climate change scenarios ranged from 48.0 to 56.9
Gt C.Under the CNOP-P-M-type climate change scenario,
the amount of the slow soil carbon pool was 8.5 Gt C,
whereas the amounts under the CNOP-P-V-type and 10

GCM climate change scenarios ranged from 4.6 to 6.4 Gt
C. The amount of the belowground litter pool under the
CNOP-P-M-type climate change scenario was 23.4 Gt C,
whereas the amounts of this pool under the CNOP-P-V-
type and 10 GCM climate change scenarios ranged from
23.0 to 23.4 Gt C.

Variations in soil carbon for the primary PFTs

The distributions of vegetation and the associated soil
carbon stocks changed during the study period due to
the different climate change scenarios. Vegetation
amounts and soil carbon stocks for three periods
(2011–2040, 2041–2070, 2071–2100) are shown in
Tables 2, 3 and 4. Large differences were found for
vegetation distributions and soil carbon stocks between
the CNOP-P-M-type and those of other climate change
scenarios. During 2011–2040, the boreal, needle-leaved
summer-green trees and the C3 perennial grasses under
the CNOP-P-M-type climate change scenario were
more abundant than those under the CNOP-P-V-type
and 10 GCM climate change scenarios. Under the
CNOP-P-M-type climate change scenario, soil carbon
stock of the boreal, needle-leaved summer-green trees

Fig. 1 The spatial distributions of averaged soil carbon stocks
driven by the CNOP-P-V-type and CNOP-P-M-type climate
change scenarios and outputs from 10 GCMs. (a): CNOP-P-V-
type climate change scenario; (b) CNOP-P-M-type climate change
scenario; (c)-(l): ACCESS1–0, CCSM4, CNRM-CM5, Fgoals-s2,
HadGEM2-AO, HadGEM2-CC, IPSL-CM5A-MR, MIROC5,
MPI-ESM-LR, MRI-CGCM3 (Unit: Kg C m−2 year−1)

�

Table 2 Main plant functional types and their soil carbon stocks during 2011–2040 under different climate change scenarios. (The number
of grid in bracket)

Climate
change
scenario

Number of plant functional type and their soil carbon stock (Gt C) Total (Gt C)
(2011–2040)

Total (Gt C)
(2011–2100)

Temperate
needle-leaved
evergreen tree

Temperate
broad-leaved
evergreen tree

Temperate
broad-leaved
summer-green
tree

Boreal
needle-leaved
evergreen tree

C3
perennial
grass

CNOP-P-Min-Max 4.6(196) 2.4(116) 22.4(810) 16.4(302) 32.5(834) 88.1 93.1

CNOP-P-Variance 1.6(91) 5.0(260) 18.3(688) 33.9(605) 23.3(731) 82.9 84.1

bcc-csm1–1 4.9(245) 3.5(176) 18.1(704) 49.31023) 6.3(234) 83.9 85.9

CCSM4 4.3(240) 3.9(190) 18.1(692) 39.2(765) 13.2(422) 81.3 82.4

CNRM-CM5 5.0(273) 3.8(186) 14.5(581) 42.8(841) 12.9(475) 82.0 84.0

FGOALS-g2 4.7(245) 3.3(163) 15.7(626) 51.0(1053) 7.3(293) 84.2 86.7

HadGEM2-AO 4.6(244) 3.4(177) 17.5(669) 21.1(367) 33.6(904) 82.8 80.9

HadGEM2-CC 5.3(264) 3.3(165) 15.0(600) 29.7(548) 22.2(719) 82.4 83.1

IPSL-CM5A-MR 3.1(186) 5.3(262) 16.7(648) 37.4(743) 14.1(483) 78.5 76.9

MIROC5 3.4(222) 5.2(259) 22.4(803) 23.5(411) 23.2(665) 79.5 75.6

MPI-ESM-LR 3.5(219) 5.4(263) 15.9(625) 45.4(905) 7.7(338) 80.1 79.8

MRI-CGCM3 5.1(258) 3.1(152) 16.0(624) 40.4(768) 14.8(500) 82.2 82.7
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(7.75 Gt C) was the highest, whereas stocks ranged from
1.48 to 1.50 Gt C for the other climate change scenarios.
The soil carbon stock of the C3 perennial grasses (32.5 Gt
C) was also the highest under the CNOP-P-M-type climate
change scenario, whereas the soil carbon stocks ranged
from 15.1 to 15.2 Gt C for the other scenarios. However,
temperate, broad-leaved evergreen trees and boreal,
needle-leaved evergreen trees were more abundant under
the CNOP-P-V-type and 10 GCM climate change scenar-
ios than those under the CNOP-P-M-type. During 2041–
2070 and 2091–2100, similar features were observed.
Compared with 2011–2040, the boreal, broad-leaved sum-
mer-green trees under theCNOP-P-M-type climate change
scenario were more abundant than those under the CNOP-
P-V-type and 10 GCM climate change scenarios. The soil
carbon stock of boreal, broad-leaved summer-green trees
(1.63 Gt C) was the highest under the CNOP-P-M-type

climate change scenario, with soil carbon stocks ranging
from 0.53 to 0.54 Gt C for the other climate change
scenarios during 2041–2070. The soil carbon stock of
boreal, broad-leaved summer-green trees (1.31 Gt C) was
also the highest under the CNOP-P-M-type climate change
scenario during 2071–2100, with soil carbon stocks rang-
ing from 0.74 to 0.75 Gt C for the other climate change
scenarios.

Discussion

Evaluations in the estimates of soil carbon

Estimates of soil carbon may differ depending on the
model or the observational data. In this section, the
estimates of soil carbon amounts in different studies

Fig. 2 The zonal averaged soil
carbon stocks for the different
climate change scenarios

Fig. 3 The variations of soil
carbon stocks during 2011–2100
for the different climate change
scenarios
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are discussed. In our study, average estimates for soil
carbon were 104.3 Gt C, which is consistent with esti-
mate (104.0 Gt C) by Tao and Zhang (2010), and 76.0
Gt C from 1961 to 1990 for whole China and only the
NSTEC region using the LPJ model. Little difference is
found among studies that estimate soil carbon (Table 5;
Ni et al., 2001; Wang et al., 2003; Wang et al. 2004; Ni
2013). According to Fang et al. (1996), using soil profile
data, the estimate of the size of the total soil carbon pool
is 185.7 Gt C for all of China, and Yang et al. (2007)
noted that total SOC storage in China varies from 69.1
to 185.7 Gt C according to their studies and previous
studies. These authors attempted to analyze the reasons
for the estimates. These estimates of soil carbon were
based on a national soil survey and field observations.
Simultaneously, many studies estimate soil carbon using
numerical models. For example, Ji et al. (2008) estimat-
ed that soil carbon was 82.8 Gt C using an atmosphere-
vegetation interaction model (AVIM2), and Mao et al.
(2009) applied the Modified-Sheffield Dynamic Global
Vegetation Model (M-SDGVM) to evaluate soil carbon
storage (95.1 Gt C). The estimates of soil carbon are
similar whether based on the national soil survey and
field observations or from models. In whole China, the
estimates employing the LPJ model were greater than
those described above studies, but also located in range

of soil carbon proposed by some studies, such as the
estimations of Fang et al. (1996) and Yang et al. (2007).
However, this will not cause the increasing trend of the
soil carbon due to future climate change.

The projected future amount of soil carbon has also
been predicted. Ni (2001) predicted that the total soil
carbon pool would increase for the baseline vegetation
and biomes of China using BIOME3 for different cli-
mates and CO2 concentrations, and the author suggested
that the increase was primarily due to changes in areas of
vegetation and the effects of changes in climate and CO2

concentration. According to Ji et al. (2008), the estimat-
ed total soil carbon will decrease from 82.78 to 77.98 Gt
C for a constant level of CO2 using AVIM2 in the
twenty-first century for the B2 scenario predicted by
HadCM3. Because of the increase in CO2 fertilization
effect, total soil carbon will increase to 92.67 Gt C by
the end of the twenty-first century. In this study, al-
though the predicted total soil carbon was different from
other studies due to regional and scenario differences,
the trends in the variation of soil carbon were similar
among the models that used the CNOP-P-type scenario.

In our research, only the LPJ DGVM was used to
examine the variation in soil carbon projections under
the different climate change scenarios predicted by 10
GCMs fromCMIP5 under RCP4.5 and the CNOP-P-M-

Table 3 Similar to Table 2, but for 2041–2070

Climate
change
scenario

Number of plant functional type and their soil carbon stock (Gt C) Total (Gt C)
(2041–2070)

Temperate
needle-leaved
evergreen tree

Temperate
broad-leaved
evergreen tree

Temperate
broad-leaved
summer-green
tree

Boreal
needle-leaved
evergreen tree

C3
perennial
grass

CNOP-P-Min-Max 4.4(205) 2.6(120) 27.1(907) 12.0(221) 37.3(745) 95.3

CNOP-P-Variance 1.5(87) 5.1(273) 27.6(938) 19.5(342) 29.7(699) 85.3

bcc-csm1–1 3.8(211) 3.5(180) 21.2(766) 47.4(996) 4.5(139) 86.6

CCSM4 4.3(247) 3.9(190) 22.2(815) 32.1(620) 12.9(400) 82.3

CNRM-CM5 5.8(294) 4.0(184) 17.4(648) 37.7(716) 12.1(401) 84.6

FGOALS-g2 4.4(241) 3.3(165) 17.8(676) 52.8(1093) 3.9(134) 87.6

HadGEM2-AO 3.9(219) 3.2(179) 24.0(849) 42.1(105) 9.4(913) 82.4

HadGEM2-CC 4.9(263) 3.3(168) 22.8(804) 20.3(363) 23.8(643) 84.2

IPSL-CM5A-MR 3.0(191) 5.1(262) 20.7(772) 24.5(475) 20.0(582) 76.9

MIROC5 3.1(213) 4.9(260) 37.7(1172) 14.1(241) 12.5(410) 76.2

MPI-ESM-LR 3.6(222) 5.6(268) 19.5(715) 40.8(797) 5.3(265) 79.9

MRI-CGCM3 5.3(280) 3.1(152) 18.9(702) 38.1(697) 9.9(378) 83.2
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type and CNOP-P-V-type climate change scenarios.
However, many studies apply multiple DGVMs and

climate change scenarios to examine the variation in
soil carbon estimates. Bachelet et al. (2003) analyzed

Fig. 4 Similar to Fig. 1, but for the fast-decomposing soil C pool. (Unit: g C m−2 year−1)
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Fig. 5 Similar to Fig. 1, but for the gridcell below-ground litter. (Unit: g C m−2 year−1)
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Fig. 6 Similar to Fig. 1, but for the slow-decomposing soil C pool. (Unit: g C m−2 year−1)
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the total soil carbon storage simulated and predicted by
MC1 and LPJ from 1895 to 2100 for HADCM2SUL
and CGCM1 climate change scenarios for the contermi-
nous United States. With an increase in CO2 concentra-
tion, using the LPJ model, a small increase (from 0.124
to 0.129 Pg) in soil carbon was found during the first
half of the twenty-first century, followed by a
small decrease under HADCM2SUL; whereas a
sharper decrease (to 0.120 Pg) was found under
CGCM1 to below historical levels. However, for

the MC1model, with an increase in CO2 concentration, a
small increase in soil carbon in the second half of the
twentieth century under CGCM1was predicted, followed
by a decline; whereas under HADCM2SUL, soil carbon
increased from historical levels to 0.115 Pg. Arora and
Matthews (2009) used The Canadian Terrestrial
Ecosystem Model (CTEM) and Top -down
Representation of Interactive Foliage and Flora
Including Dynamics (TRIFFID) to predict the future
soil carbon for 2001–2100 based on the three IPCC
Special Reports on Emissions Scenarios (SRES):
A2, A1B and B1 (Intergovernmental Panel on
Climate Change, 2001). In those evaluations, the
global averaged soil carbon would increase by ap-
proximately 200 Pg C; however, large uncertainties
were found among different scenarios and models.
Walker et al. (2015) found that soil carbon increased
with changes in CO2 concentrations over 300 years
based on the Duke and Oak Ridge Free-Air CO2

Enrichment (FACE) experiments using multiply land
models.

Interactions between soil carbon and climate change

Carbon cycle-climate feedbacks between the climate
system and terrestrial ecosystems are essential (Arora
et al. 2013). Numerous modeling studies demonstrate

Table 5 Comparisons of China’s soil carbon stock between this
study and other estimates

Soil carbon stock Reference

185.7 Gt C Fang et al. (1996)

119.8 Gt C Ni (2001)

92.4 Gt C Wang et al. (2001)

82.5 ± 19.5 Pg C Wang et al. (2004)

69.1 Gt C Yang et al. (2007)

82.8 Gt C Ji et al. (2008)

95.1 Gt C Mao et al. (2009)

100.8 Gt C (43.6 Gt C to 185.7 Gt C) Ni (2013)

104.4 Gt C This study

Table 4 Similar to Table 2, but for 2041–2070

Climate change
scenario

Number of plant functional type and their soil carbon stock (Gt C) Total (Gt C)
(2071–2100)

Temperate
needle-leaved
evergreen tree

Temperate
broad-leaved
evergreen tree

Temperate
broad-leaved
summer-green
tree

Boreal
needle-leaved
evergreen tree

C3
perennial
grass

CNOP-P-Min-Max 3.9(209) 2.6(121) 30.3(994) 12.6(229) 34.5(635) 95.9

CNOP-P-Variance 1.4(89) 5.3(292) 32.3(1079) 18.3(327) 25.1(555) 84.2

bcc-csm1–1 3.6(209) 3.5(179) 25.7(869) 44.3(895) 4.4(141) 87.3

CCSM4 4.1(250) 3.9(190) 25.7(914) 29.5(559) 13.3(355) 83.6

CNRM-CM5 5.4(288) 4.0(183) 21.9(759) 32.0(575) 13.7(419) 85.3

FGOALS-g2 4.0(237) 3.4(170) 19.5(726) 52.8(1081) 2.3(77) 88.2

HadGEM2-AO 3.4(217) 3.1(181) 29.7(1035) 29.4(99) 12.9(696) 77.6

HadGEM2-CC 4.4(262) 3.2(166) 26.4(905) 15.3(268) 24.6(604) 82.7

IPSL-CM5A-MR 2.8(178) 5.0(267) 24.6(883) 21.9(419) 17.3(481) 75.2

MIROC5 2.8(197) 5.0(266) 36.8(1216) 12.6(224) 9.5(366) 71.2

MPI-ESM-LR 3.6(222) 5.6(267) 22.2(775) 38.2(733) 3.8(208) 79.4

MRI-CGCM3 4.5(261) 3.1(154) 22.0(788) 36.0(641) 8.8(352) 82.7
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the potential for positive carbon cycle feedbacks to operate
within the climate system. In our studies, the response of
soil carbon to future climate change was explored under
different climate change scenarios. For the higher total soil
carbon due to the CNOP-P-M-type climate change scenar-
io, precipitation was more abundant under this scenario
than that in the other climate change scenarios, with the
exception of that for the MIROC5 model (Fig. 7a).
Additionally, the temperature due to the CNOP-P-M-type
climate change scenario was lower than that in the other
climate change scenarios, with the exception of that for the
FGOALS-g2 model (Fig. 7b). This lower temperature
under global warming may explain soil carbon accumula-
tion (Wieder et al. 2013; 2014), with the global changes in
soil moisture also tending to increase soil carbon storage
(Falloon et al. 2011). However, the relationship between
the global carbon cycle and the climate system is a two-
way process, and the variation in soil carbon may be the
primary reason for cooler annual mean soil temperatures
(Lawrence and Slater 2008), according to the Community
AtmosphereModel version 3 (CAM3, Collins et al. 2006).
Thus, the variation in soil carbon can cause changes in the
climate system, and the examination of a one-way effect of
climate change on soil carbon is deficient. In the future, the
coupling of models of the global carbon cycle and the
climate system will be considered.

Relations between soil carbon and CO2

Increases in atmospheric CO2 will likely increase rates
of both photosynthesis and decomposition in soil
(Heyder et al. 2011; Friend et al. 2014). To examine
the different contributions of climate change and CO2

concentration under the CNOP-P-V-type climate change
scenario, a study was implemented with the CO2 con-
centration maintained at a constant level and the climate
change scenario the CNOP-P-V-type. In our study, two
periods occurred when increasing atmospheric CO2 in-
fluenced soil carbon under the CNOP-P-M-type climate
change scenario. In the first 30 years, climate change
played the key role in the increase in soil carbon when
compared with the study when CO2 concentration was
maintained at a constant level (Fig. 8). In the last
50 years, the persistently high soil carbon storage was
maintained by the contribution from the increase in CO2

concentration. Therefore, the long-term variation in soil
carbon might be affected by the CO2 concentration,
whereas climate change might determine the transient
variation in soil carbon.

Relations between soil carbon and plant

To explore the relations between soil carbon and plant,
the variations of components of soil carbon and plant are
discussed due to climate change. Within the LPJ model,
the variation of the soil carbon is dependent on the
decomposition of above-ground and below-ground
component of plant litter related to root growth.
Among three components of soil carbon, below-
ground component of plant litter, fast soil carbon pool,
and slow soil carbon pool, the fast soil carbon pool is an
important factor to result in the variation of soil carbon
because of huge amounts (Fig. 4). The fast and slow soil
carbon pools come from decompositions of above-
ground and below-ground components of plant litter to
soil dependent on the root growth (Wang et al. 2016).
So, the future climate change and the increase in CO2

concentration promotes the amount of vegetation and its
litter (Hyvönen et al. 2002; Wan et al. 2004; Allard et al.
2005; Carrillo et al. 2011), and stimulates the decompo-
sition of plant litter, and leads to the augment of soil
carbon stock during study period, especially for the first
30 years of study period. These results are consistent
with other studies. For example, Hyvönen et al. (2002)
pointed that the litter production would increase with
increasing temperature from field experiments, and
Garten et al. (2009) suggested that significant below-
ground inputs of new organic matter under precipitation
change. In our researches, the fast soil carbon pool
is main contribution of the variation of soil carbon
under different climate change scenarios, especially
for the CNOP-P-M-type climate change scenario, in
which there are high precipitation and low tempera-
ture that favor the augment of soil carbon stock. On
the other hand, the most of carbon flux to soil is
transformed into the fast soil carbon pool within the
LPJ model. This is another reason that the fast soil
carbon pool is main contribution of the variation of
soil carbon. Ten plant types (8 woody and 2 herba-
ceous plants) are used in the LPJ model. However,
the agroecosystem, such as cropland, rice and wheat
and so on, could not be descripted in this model. So,
the relation between soil carbon and plant about the
agroecosystem is lack of discussion, although soil
management can play an important role in offsetting
national carbon emissions. The relation may be ex-
plored with other terrestrial ecosystem models, such
as the Community Land Model (CLM) or the
Century model.
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Summary

Soil is the largest organic carbon pool in the
terrestrial biosphere, and even a minor change in

soil organic carbon (SOC) stock can significantly
alter the concentration of atmospheric carbon di-
oxide (CO2) (Davidson and Janssens 2006;
Trumbore and Czimczik 2008). In the future, the

Fig. 7 The different climate change scenarios during 2011–2100. a Precipitation; b Temperature
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variations of soil carbon may be unpredictable due
to climate change and increasing CO2. To under-
stand the future variations of soil carbon, the var-
iations in soil carbon in the NSTEC region were
explored during 2011–2100 under the RCP4.5 sce-
nario and the CNOP-P-type climate change scenar-
io. The CNOP-P-type climate change scenario was
determined based on the climate change scenario
predicted by 10 GCMs under the RCP4.5 scenario;
therefore, the CNOP-P-M-type and CNOP-P-V-
type climate change scenarios were reasonable.
However, the CNOP-P-M-type climate change sce-
nario can be used to evaluate the maximal uncer-
tainty for soil carbon in the NSTEC region. The
average total soil carbon from 2011 to 2100 was
93.1 Gt C for the CNOP-P-M-type climate change
scenario, whereas a range of soil carbon was esti-
mated from 75.6 Gt C for the climate change scenario
estimated by the MIROC5 model to 86.7 Gt C for the
climate change scenario estimated by the FGOALS-
g2 model. Under the RCP4.5 scenario for different
climate change scenarios, soil carbon increased in
the future. The modeling results indicated that soils
in the NSTEC region might play the role of carbon
sink. Thus, the maximal uncertainty of future soil
carbon projections can be assessed using the
CNOP-P approach.

The variation in plant functional types and asso-
ciated soil carbon were also different under the
different climate change scenarios provided by 10
GCMs and the CNOP-P approach under RCP4.5

scenario. Under the CNOP-P-M-type climate change
scenario, boreal, needle-leaved summer-green trees
and C3 perennial grasses increased in abundance,
with the associated soil carbon the primary source
of variation for total soil carbon because the increase
in growth of these plant functional groups under this
scenario consequently led to an increase in the stor-
age of soil carbon. Under other climate change sce-
narios, temperate, broad-leaved evergreen trees and
boreal needle-leaved evergreen trees were the prima-
ry affected functional groups. These differences
were rooted in different climate change scenarios,
which were provided by the output of GCMs. In
addition, the permafrost may be located in our study
region. However, the permafrost could not be con-
sidered in the LPJ model. The new LPJ model has
included the physical processes about the perma-
frost. The new version LPJ model would be
employed the variations of soil carbon.
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