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Abstract

Tropical cyclones (TCs) formed in the Northwest Pacific Ocean (NWP) can cross the South China Sea (SCS)
sometimes. It is found that the TC tracks in the SCS in November are shifted to the north after 1980 compared with
those before 1980. Both data analyses and numerical simulations show that the surface warming in the SCS may
contribute to this more northward shift. The warming produces a cyclonic atmosphere circulation anomaly in the
northwestern SCS and an associated southerly in the central SCS steering the TCs to the north.
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1 Introduction

The South China Sea (SCS) is a semi-enclosed marginal sea
surrounded by continent and islands. It is one of the regions that
suffer from serious disasters caused by tropical cyclones (TCs).
Some TCs formed over the Northwest Pacific Ocean (NWP), and
then moved into the SCS. The tracks of these TCs in the SCS ex-
hibited significant variability from intra seasonal to interdecadal
change (Chen and Ding, 1979; Chan, 1995, 2000; Chia and
Ropelewski, 2002).

The TC track is generally determined by the large-scale steer-
ing flow, beta effect and terrain effect (Chan and Gray, 1982; Hol-
land, 1983; Wang et al., 1998; Chan, 2005; Wu et al., 2005; Wang
and Holland, 1996a, b). The ocean also plays a role in the TC
track by affecting a large-scale steering flow through air-sea inter-
action (Wu and Wang 2005; Wu et al., 2005; Tu et al., 2009; Wang
etal., 2011) or by changing the horizontal advection of the local
cyclonic vortex under certain topographic effect (Yun et al., 2012;
Choi et al., 2013). For example, Wang and Holland(1996a, b)
talked about the beta drift in both adiabatic and diabatic baro-
clinic vortices and revealed the important role of beta gyres in
controlling TC northwestward movement. The higher SST may
induce stronger TC intensity and larger beta-drift. Wu et al.
(2005) found that the westward expansion and strengthening of
the subtropical high due to climate change resulted in a west-

ward shift of typhoon tracks in the NWP. A warmer SST can in-
duce a local circulation anomaly and further affect TC move-
ment (Yun et al., 2012).

It has been discussed that the TC tracks exhibit quite differ-
ent characteristics in different months over the NWP (Chen and
Ding, 1979). In November, the TCs from the NWP usually move
westward, travel across the SCS Basin, and make landfall in Viet-
nam (Fig. 1). The latitudes of these TCs’ landfall were usually
from 6°N to 16°N while some typhoons shifted their tracks to the
northwest (Hainan Island) after they moved into the SCS. Be-
sides, no significant track shift is found in other months. Are
there any robust features in these TC tracks in November? Does
the SCS play an important role in causing these features? In this
study, these two questions are investigated using observations
and numerical models.

2 Data, models and methods

The monthly SST data with 1°x1° resolution is from the UK
Met Office Hadley Centre sea ice and sea surface temperature
(HadISST). The best-track data from the Japan Meteorological
Agency (JMA) includes tropical cyclone position, time and in-
tensity (such as 10 min averaged maximum wind speed and the
TC central minimum sea level pressure, MSLP) every 6 h. Daily
700 hPa wind speed with 2.5°x2.5° resolution is from the Nation-
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Fig. 1. Tracks of TCs crossed the SCS in November. The thick
gray line denotes the four unusual TCs and the thin gray line is
for the others. The magenta and green lines are the tracks for the
ensemble mean, TC Joan and simulated TC Joan, respectively.

al Centers for Environmental Prediction (NCEP)/National Cen-
ter for Atmospheric Research (NCAR) reanalysis. In this study, we
used the above data sets from 1951 to 2013.

The weather research and forecasting (WRF) model Version
3.5 is used in this study. Two nested grids are designed for a TC
simulation, covering the area of (0°-30°N, 100°-170°E) and
(5°-25°N, 105°-140°E), respectively. A horizontal resolution for
the outer domain is 30 km with (245x106) grids, and that for the
inner domain is 10 km with (358x220) grids. There are 30 sigma
levels in the vertical, and the top level is set to 50 hPa. The initial
and boundary conditions are constructed from the NCEP final
(FNL) operational global analysis data, including 6 h reanalysis
data with horizontal resolution of 1°x1°. For realistic simulations,
the basic state of the atmosphere and the initial/boundary condi-
tions of experiments were taken from those for TC Joan (1964),
Skip (8829) and Haiyan (1330). Experiments were designed in
this study to test the SST role in a TC track shift, namely, the con-
trol experiment and a warming/cooling experiment. The SST was
increased/decreased by 0.5°C in the SCS Basin uniformly only in
the warming/cooling experiment to see if TC movement is af-
fected by the change (based on an observational result in Section
3.1). More details will be given in Section 3.2. Main model para-
meterizations are shown in Table 1.

To study the north-south shift of the TC tracks in the SCS, the
TCs that entered the SCS along 120°E and left the basin along
109°E in November were selected. We calculated the latitude dif-
ference (¢) of TC tracks between 120°E and 109°E as follows:

Sns = @109 — P120, (1)

Table 2. NSSs of selected TCs

Physics Parameterization scheme
Microphysics Lin et al. scheme
Long wave radiation RRTM scheme
Short wave radiation Dubhia scheme
Surface layer MMS5 similarity

Planetary boundary layer Yonsei University scheme

Cumulus parameterization GD ensemble scheme

where ¢,,, and ¢, 4 are the latitudes when a TC moves across
120°E and 109°E, respectively, and S  represents the north-south
shift (NSS) of the TC. The positive (negative) NSS denotes that a
TC moves to the north (south) in the SCS. The selected TCs and
their NSSs are listed in Table 2.

3 Results

3.1 Results based on observations

To reveal the shift of the TC tracks, we use two periods: the
first one from 1951 to 1979, and the second one from 1980 to
2013. The two periods are chosen because all of the four unusual
TCs whose northward shift was larger than 5.7° happened after
1980. The four TCs are Hazen (1981), Mike (1990), Nepartak
(2003), and Haiyan (2013). On average, the NSS from 1951 to
2013, in the first period and the second period was 1.30°, -0.14°
and 2.36°, respectively, which means that the TC track shift in the
second period was 2.52° more to the north compared with that in
the first period (Fig. 2a), when the four unusual TCs are included.
Even after removing the four unusual TCs, the TC track shift after
1980 was still about 0.82° to the north of that in the first period
(Fig. 2b).

Why did the TCs after 1980 move more northward in Novem-
ber than those before 1980? The steering flow (750 hPa wind
field) of the November climatology mean in the two periods is
shown in Figs 3a and b. The steering flow in the central SCS was
easterly and a little northerly in both these two periods, explain-
ing the westward movement of the TC considering the beta ef-
fect. But the difference is that the steering flow is significantly
weakened in the second period than in the first one, which is less
than and more than 5 m/s, respectively. The differences between
these two periods are shown in Fig. 3c, which demonstrates a sig-
nificant southerly and westerly anomaly (about 1-2 m/s) in the
central SCS from the southwest to the northeast. There also exis-
ted a weak cyclonic circulation anomaly in the northwestern SCS.
Itis indicated in the previous studies that the TC movement is
controlled by the combination of the environmental steering flow
and the beta effect. The increase of the southerly and the de-
crease of the easterly could both make the TCs to move more
northward as the results of the strengthened steering effect and

Year TC name, number and NSS/(°)
Before Wanda Tilda Lucy Joan Freda Mamie Nifla Opal Patsy Hester Helen
1980 5119 5422 6229 6429 6736 6825 6 826 7024 7025 7429 7518
-0.2 -0.9 -0.6 0.4 2.7 1.8 -0.5 -3.1 1.8 -0.6 -2.3
After 1980 Hazen Herbert Maury Skip Tess Mike Thelma Kyle Elvis Lingling Nepartak
8125 8623 8721 8829 8830 9025 9125 9325 9814 0123 0320
7.5 1.8 0.5 3.0 2.2 5.8 -0.9 1.2 3.0 1.0 9.0
After 1980  Nuifa Durian Haiyan Zoraida
0425 0621 1330 1331
-3.5 -2.7 5.7 1.8

Note: Bold font is used for the four TCs of unusual northward shift.
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Fig. 2. The north-south shift of tracks for the TCs from 1951 to 2013 (a), same as Fig. 2a, except for the four unusual TCs (b) and SCS-
averaged SST in November from 1951 to 2013 (c). Black thin, blue and red lines denote the averages of the periods from 1951 to 2013,
1951 to 1979 and 1980 to 2013, respectively.
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Fig. 3. Steering flows at 700 hPa of the November climatology mean in the first and the second period, respectively (a, b) and the
change of the steering flow in the second period compared with that in the first one (c).
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the more acting time of the beta effect, respectively.

As is well known, 1979 was the year when the global warming
rate significantly increased (IPCC, 2007; Hansen et al., 2010). The
shift was also significant in the SCS, which was mentioned by
several studies (Huang et al., 2007; Liang et al., 2007; Wang et al.,
2009). The average SSTs in the SCS before and after 1980 were
27.1 and 27.6°C (Fig. 2c), respectively. Considering both the
warming and more northward track occurred around 1980, we
hypothesize that the SST variation may have contributed to the
northward shift of the TC tracks. Can the SCS warming induce a
southerly anomaly in the central SCS and contribute to the north-
ward shift of the TC tracks? To answer this question, we turn to
numerical simulations.

3.2 Numerical model results

To test whether the SCS warming can result in more north-
ward shift of the TCs or not, two kinds of TCs were chosen: (1) TC
Joan (1964) and Skip (8829) and (2) Haiyan (2013) . This choice
was made with the following reasons: (1) Tracks of TC Joan was
similar to the ensemble-mean track of the TCs in November (Fig.
1); (2) the SCS SST before TC Joan and Skip entered the SCS were
both comparable to the mean SST (27.1°C) from 1951 to 1979,

Table 3. WRF experiments design for TC Joan, Skip and Haiyan
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which were 26.7 and 26.9°C, respectively; (3) TC Haiyan was one
of the four unusual TCs, shifted 5.7° northward in the SCS and the
SCS SST before it entered the SCS was 27.6°C, which was equal to
the mean SST (27.6°C) in the second period. The full physics
model WRF was adopted in the study and three sensitivity experi-
ments were designed to investigate the role of the SCS SST in TC
movement (Table 3). The SCS SST was increased by 0.5°C in ex-
periment J-SCS and S-SCS to check if their tracks in the SCS
would exhibit more northward shift caused by the SCS warming.
H-SCS was to see if the track will shift southward when the SCS
warming was removed. Considering the different SST forcing
conditions in these experiments, we divided these experiments
into two kinds: and the cooling experiments (J-CTL, S-CTL and
H-SCS) and the warming experiments (J-SCS, S-SCS and H-CTL).

The NSSs of the simulated TC tracks in experiments J-CTL
and S-CTL were 0.96° and 1.27°, respectively, which were com-
parable to their actual shift and quite similar to the ensemble
mean (1.30°) (Fig. 1). After the SST was increased by 0.5°C in the
SCS Basin uniformly in the warming experiments, the simulated
track of J-SCS and S-SCS both exhibited a significant northward
shift. Their northward movement reached 1.81° and 3.30° (Fig. 4),
supporting our hypothesis that the SCS SST plays an important

TC Control experiment Sensitive experiment Details
Joan J-CTL J-SCS the SST in the SCS is increased by 0.5°C
Skip S-CTL S-SCS the SST in the SCS is increased by 0.5°C
Haiyan H-CTL H-SCS the SST in the SCS is decreased by 0.5°C
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Fig. 4. TC tracks in the WRF simulations: control experiments (magenta lines) and observations (black lines) (a) and sensitivity
experiment results of TC Joan and Skip (blue and red lines denote cooling and warming experiments, respectively) (b-d).
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role in the northward shift of the SCS TC tracks. Comparing H-
CTL and its cooling experiment H-SCS, the simulated track of
Haiyan exhibited a southward shift when the SCS SST decreased
by 0.5°C: NSSs in these two experiments were 5.50° and 4.52°, re-
spectively. This indicates that the SCS warming contribute to the
northward shift of TC Haiyan, further supporting the hypothesis
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that the SCS SST plays an important role in the northward shift of
the SCS TC tracks.

The steering flow in these six experiments is calculated and
the differences between the warming and cooling experiments
are shown in Fig. 5. It is clear that the steering flow in the SCS ex-
hibited significant change after the SCS was warmed up by 0.5°C.
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Fig. 5. The change of the steering flow between the warming and cooling experiments: ensemble mean of Joan, Skip and Haiyan (a)

and Joan, Skip and Haiyan (b-d), respectively.

The ensemble mean difference gives a quite similar pattern with
the observation (Fig. 3c): there also exist a cyclonic circulation in
the northwestern SCS and the southwesterly in the central SCS
from the southwest to the northeast. This response to the SCS
warming makes a contribution to the northward drift of TC mo-
tion. The beta drift is also calculated but the beta gyres are not
clear in neither cooling nor warming experiments (figure not
shown), indicating that the beta effect may have little effect on

the northward shift of the TCs in November after 1980.

Why does the warming over the SCS cause a cyclonic anom-
aly in the northwestern SCS? This can be explained by Gill’s
(1980) theory. The vorticity balance requires the southerly wind
anomaly over the heating region and the return flow being situ-
ated farther west associated with the Rossby wave response;

hence, a cyclonic anomaly appears on the northwestern flank of
the forcing region.
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4 Conclusions

The tracks of the SCS TCs in November show more north-
ward shift after 1980. Both observations and numerical simula-
tions suggest that the SCS warming plays an important role in
this more northward shift: the warming in the SCS can induce a
cyclonic anomaly in the northwestern SCS, and its associated
southerly anomaly in the central SCS can make the TC to move
further to the north in the SCS.

Our study indicates that the SST in the SCS Basin plays a role
in TC movement in the meridional direction. Since the dynamic
processes of the atmospheric circulation are not fully considered
in this study, for example, teleconnections between the SCS large
scale steering flow and the global atmospheric circulation, fur-
ther studies are needed to deepen our understanding of the TC
track shift over the SCS.
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